2019-2020年高考数学一轮复习第九章平面解析几何9.8圆锥曲线的综合问题课时3定点、定值、探索性问题文.doc

上传人:tian****1990 文档编号:2747990 上传时间:2019-11-29 格式:DOC 页数:14 大小:224.50KB
返回 下载 相关 举报
2019-2020年高考数学一轮复习第九章平面解析几何9.8圆锥曲线的综合问题课时3定点、定值、探索性问题文.doc_第1页
第1页 / 共14页
2019-2020年高考数学一轮复习第九章平面解析几何9.8圆锥曲线的综合问题课时3定点、定值、探索性问题文.doc_第2页
第2页 / 共14页
2019-2020年高考数学一轮复习第九章平面解析几何9.8圆锥曲线的综合问题课时3定点、定值、探索性问题文.doc_第3页
第3页 / 共14页
点击查看更多>>
资源描述
2019-2020年高考数学一轮复习第九章平面解析几何9.8圆锥曲线的综合问题课时3定点、定值、探索性问题文题型一定点问题例1已知椭圆1(a0,b0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于Q、P,与椭圆分别交于点M、N,各点均不重合且满足1,2.(1)求椭圆的标准方程;(2)若123,试证明:直线l过定点并求此定点.解(1)设椭圆的焦距为2c,由题意知b1,且(2a)2(2b)22(2c)2,又a2b2c2,所以a23.所以椭圆的方程为y21.(2)由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),设l方程为xt(ym),由1知(x1,y1m)1(x0x1,y1),y1my11,由题意y10,11.同理由2知21.123,y1y2m(y1y2)0,联立得(t23)y22mt2yt2m230,由题意知4m2t44(t23)(t2m23)0,且有y1y2,y1y2,代入得t2m232m2t20,(mt)21,由题意mtb0)的离心率是,其左,右顶点分别为A1,A2,B为短轴的一个端点,A1BA2的面积为2.(1)求椭圆C的方程;(2)直线l:x2与x轴交于D,P是椭圆C上异于A1,A2的动点,直线A1P,A2P分别交直线l于E,F两点,求证:DEDF为定值.(1)解由已知,可得解得a2,b.故所求椭圆方程为1.(2)证明由题意可得A1(2,0),A2(2,0).设P(x0,y0),由题意可得2x00).(2)弦长TS为定值.理由如下:取曲线C上点M(x0,y0),M到y轴的距离为d|x0|x0,圆的半径rMA,则TS22,因为点M在曲线C上,所以x0,所以TS22,是定值.题型三探索性问题例3(xx湖北)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处的铰链与ON连结,MN上的栓子D可沿滑槽AB滑动,且DNON1,MN3.当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C.以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1) 求椭圆C的方程;(2) 设动直线l与两定直线l1:x2y0和l2:x2y0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解(1)因为OMMNNO314,当M,N在x轴上时,等号成立;同理OMMNNO312,当D,O重合,即MNx轴时,等号成立.所以椭圆C的中心为原点O,长半轴长为4,短半轴长为2,其方程为1.(2)当直线l的斜率不存在时,直线l为x4或x4,都有SOPQ448.当直线l的斜率存在时,设直线l:ykxm,由消去y,可得(14k2)x28kmx4m2160.因为直线l总与椭圆C有且只有一个公共点,所以64k2m24(14k2)(4m216)0,即m216k24.(*1)又由可得P;同理可得Q.由原点O到直线PQ的距离为d和PQ|xPxQ|,可得SOPQPQd|m|xPxQ|m|.(*2)将(*1)代入(*2)得,SOPQ8.当k2时,SOPQ888;当0k2时,SOPQ88.因0k2,则0b0)以抛物线y28x的焦点为顶点,且离心率为.(1)求椭圆E的方程;(2)若直线l:ykxm与椭圆E相交于A,B两点,与直线x4相交于Q点,P是椭圆E上一点且满足(其中O为坐标原点),试问在x轴上是否存在一点T,使得为定值?若存在,求出点T的坐标及的值;若不存在,请说明理由.解(1)抛物线y28x的焦点为椭圆E的顶点,即a2.又,故c1,b.椭圆E的方程为1.(2)设A(x1,y1),B(x2,y2),P(x1x2,y1y2),联立得(4k23)x28kmx4m2120.由根与系数的关系,得x1x2,y1y2k(x1x2)2m.将P代入椭圆E的方程,得1,整理,得4m24k23.设T(t,0),Q(4,m4k),(4t,m4k),.即.4k234m2,.要使为定值,只需2为定值,则1t0,t1,在x轴上存在一点T(1,0),使得为定值.20.设而不求,整体代换典例(16分)椭圆C:1(ab0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连结PF1,PF2,设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1、PF2的斜率分别为k1、k2,若k20,证明为定值,并求出这个定值.思维点拨第(3)问,可设P点坐标为(x0,y0),写出直线l的方程;联立方程组消去y得关于x的一元二次方程,则0;变为,把k与均用x0,y0表示后可消去.规范解答解(1)由于c2a2b2,将xc代入椭圆方程1,得y.2分由题意知1,即a2b2.又e,所以a2,b1.所以椭圆C的方程为y21.4分(2)设P(x0,y0) (y00),又F1(,0),F2(,0),所以直线PF1,PF2的方程分别为lPF1:y0x(x0)yy00,lPF2:y0x(x0)yy00.6分由题意知.由于点P在椭圆上,所以y1.所以.8分因为m,2x02,可得,所以mx0.因此m0或说明中点在曲线内部.3.解决定值、定点问题,不要忘记特值法.(时间:80分钟)1.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.解(1)依题意,可设椭圆C的方程为1(ab0),且可知其左焦点为F(2,0).从而有解得又a2b2c2,所以b212,故椭圆C的方程为1.(2)假设存在符合题意的直线l,设其方程为yxt.由得3x23txt2120.因为直线l与椭圆C有公共点,所以(3t)243(t212)0,解得4t4.另一方面,由直线OA与l的距离d4,得4,解得t2.由于24,4 ,所以不存在符合题意的直线l.2.(xx四川)如图,椭圆E:1(ab0)的离心率是,点P(0,1)在短轴CD上,且1.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由.解(1)由已知,点C、D的坐标分别为(0,b),(0,b),又点P的坐标为(0,1),且1,于是解得a2,b,所以椭圆E的方程为1.(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,A,B的坐标分别为(x1,y1),(x2,y2),联立得(2k21)x24kx20,其判别式(4k)28(2k21)0,所以x1x2,x1x2,从而,x1x2y1y2x1x2(y11)(y21)(1)(1k2)x1x2k(x1x2)12.所以当1时,23,此时3为定值.当直线AB斜率不存在时,直线AB即为直线CD,此时,213.故存在常数1,使得为定值3.3.已知椭圆C:1 (ab0)的两焦点在x轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形.(1)求椭圆的方程;(2)过点S的动直线l交椭圆C于A,B两点,试问:在坐标平面上是否存在一个定点Q,使得以线段AB为直径的圆恒过点Q?若存在,求出点Q的坐标;若不存在,请说明理由.解(1)椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,bc.又斜边长为2,即2c2,故cb1,a,椭圆方程为y21.(2)当l与x轴平行时,以线段AB为直径的圆的方程为x22;当l与y轴平行时,以线段AB为直径的圆的方程为x2y21.由得故若存在定点Q,则Q的坐标只可能为Q(0,1).下面证明Q(0,1)为所求:若直线l的斜率不存在,上述已经证明.若直线l的斜率存在,设直线l:ykx,A(x1,y1),B(x2,y2),由得(918k2)x212kx160,144k264(918k2)0,x1x2,x1x2,(x1,y11),(x2,y21),x1x2(y11)(y21)(1k2)x1x2(x1x2)(1k2)0,即以线段AB为直径的圆恒过点Q(0,1).4.已知直线l:yx,圆O:x2y25,椭圆E:1(ab0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.(1)解设椭圆半焦距为c,圆心O到l的距离d,则l被圆O截得的弦长为2,所以b.由题意得又b,a23,b22.椭圆E的方程为1.(2)证明设点P(x0,y0),过点P的椭圆E的切线l0的方程为yy0k(xx0)整理得ykxy0kx0,联立直线l0与椭圆E的方程消去y,得2kx(y0kx0)23x260,整理得(32k2)x24k(y0kx0)x2(kx0y0)260,l0与椭圆E相切,4k(y0kx0)24(32k2)2(kx0y0)260,整理得(2x)k22x0y0k(y3)0,设满足题意的椭圆E的两条切线的斜率分别为k1,k2,则k1k2.点P在圆O上,xy5,k1k21.两条切线斜率之积为常数1.5.(xx福建)已知曲线上的点到点F(0,1)的距离比它到直线y3的距离小2.(1)求曲线的方程;(2)曲线在点P处的切线l与x轴交于点A,直线y3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.解方法一(1)设S(x,y)为曲线上任意一点,依题意,点S到F(0,1)的距离与它到直线y1的距离相等,所以曲线是以点F(0,1)为焦点、直线y1为准线的抛物线,所以曲线的方程为x24y.(2)当点P在曲线上运动时,线段AB的长度不变.证明如下:由(1)知抛物线的方程为yx2,设P(x0,y0)(x00),则y0x,由yx,得切线l的斜率ky|xx0x0,所以切线l的方程为yy0x0(xx0),即yx0xx.由得A(x0,0).由得M(x0,3).又N(0,3),所以圆心C(x0,3),半径rMN|x0|,AB .所以点P在曲线上运动时,线段AB的长度不变.方法二(1)设S(x,y)为曲线上任意一点,则|y(3)|2,依题意,点S(x,y)只能在直线y3的上方,所以y3,所以y1,化简,得曲线的方程为x24y.(2)同方法一.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!