2019-2020年高中数学 1.3《二项式定理》学案 新人教A版选修选修2-3.doc

上传人:tia****nde 文档编号:2366411 上传时间:2019-11-21 格式:DOC 页数:5 大小:134KB
返回 下载 相关 举报
2019-2020年高中数学 1.3《二项式定理》学案 新人教A版选修选修2-3.doc_第1页
第1页 / 共5页
2019-2020年高中数学 1.3《二项式定理》学案 新人教A版选修选修2-3.doc_第2页
第2页 / 共5页
2019-2020年高中数学 1.3《二项式定理》学案 新人教A版选修选修2-3.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019-2020年高中数学 1.3二项式定理学案 新人教A版选修选修2-3学习目标:1掌握二项式定理和二项式系数的性质。2.能灵活运用展开式、通项公式、二项式系数的性质解题 学习重点:如何灵活运用展开式、通项公式、二项式系数的性质解题学习难点:如何灵活运用展开式、通项公式、二项式系数的性质解题授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入:1二项式定理及其特例:(1),(2).2二项展开式的通项公式: 3求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性 4二项式系数表(杨辉三角)展开式的二项式系数,当依次取时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和5二项式系数的性质:展开式的二项式系数是,可以看成以为自变量的函数,定义域是,例当时,其图象是个孤立的点(如图)(1)对称性与首末两端“等距离”的两个二项式系数相等()直线是图象的对称轴(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值(3)各二项式系数和:,令,则 二、讲解范例:例1 设,当时,求的值解:令得:,点评:对于,令即可得各项系数的和的值;令即,可得奇数项系数和与偶数项和的关系例2求证:证(法一)倒序相加:设 又, 由+得:,即(法二):左边各组合数的通项为, 例3已知:的展开式中,各项系数和比它的二项式系数和大(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项解:令,则展开式中各项系数和为,又展开式中二项式系数和为,(1),展开式共项,二项式系数最大的项为第三、四两项,(2)设展开式中第项系数最大,则,即展开式中第项系数最大,例4已知,求证:当为偶数时,能被整除分析:由二项式定理的逆用化简,再把变形,化为含有因数的多项式 ,为偶数,设(), () ,当=时,显然能被整除,当时,()式能被整除,所以,当为偶数时,能被整除三、课堂练习:1展开式中的系数为 ,各项系数之和为 2多项式()的展开式中,的系数为 3若二项式()的展开式中含有常数项,则的最小值为( ) A.4 B.5 C.6 D.84某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 ( ) A.低于5 B.在56之间 C.在68之间 D.在8以上5在的展开式中,奇数项之和为,偶数项之和为,则等于( )A.0 B. C. D.6求和:7求证:当且时,8求的展开式中系数最大的项 答案:1. 45, 0 2. 0 提示:3. B 4. C 5. D 6. 7. (略) 8. 四、小结 :二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用 五、课后作业:1已知展开式中的各项系数的和等于的展开式的常数项,而 展开式的系数的最大的项等于,求的值答案:2设求: 答案:; 3求值:答案:4设,试求的展开式中:(1)所有项的系数和;(2)所有偶次项的系数和及所有奇次项的系数和答案:(1); (2)所有偶次项的系数和为;所有奇次项的系数和为六、板书设计(略) 七、课后记:
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!