高考数学二轮复习 专题二 第3讲 平面向量课件 理.ppt

上传人:sh****n 文档编号:1852506 上传时间:2019-11-08 格式:PPT 页数:35 大小:1.72MB
返回 下载 相关 举报
高考数学二轮复习 专题二 第3讲 平面向量课件 理.ppt_第1页
第1页 / 共35页
高考数学二轮复习 专题二 第3讲 平面向量课件 理.ppt_第2页
第2页 / 共35页
高考数学二轮复习 专题二 第3讲 平面向量课件 理.ppt_第3页
第3页 / 共35页
点击查看更多>>
资源描述
第3讲 平面向量,高考定位 1.对向量的概念和线性运算的考查多以熟知的平面图形为背景,多为客观题;2.对平面向量数量积的考查多以考查角、模等问题为主,难度不大;3.还可能体现模块之间的综合性(例如与三角、解析几何等相结合).,真 题 感 悟,D,A,A,考 点 整 合,1.平面向量的两个重要定理 (1)向量共线定理:向量a(a0)与b共线当且仅当存在唯一一个实数,使ba. (2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数1,2,使a1e12e2,其中e1,e2是一组基底.,探究提高 解决此类问题的关键是先选择一组基底,并运用平面向量的基本定理,将条件和结论表示成基底的线性组合,再通过对比已知等式列方程组可得.,解析 依题意得a2c(3,1)(2k,14)(32k,15), 因为b(1,3),(a2c)b. 所以3(32k)15,解得k1.,答案 1,探究提高 在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断,即若a(x1,y1),b(x2,y2),则ab的充要条件是 x1y2x2y10;若两向量不是以坐标形式呈现的,常利用共线向量定理(当b0时,ab存在唯一实数,使得ab)来判断.,探究提高 求解几何图形中的数量积问题,通过对向量的分解转化成已知向量的数量积计算是基本方法,但是如果建立合理的平面直角坐标系,把数量积的计算转化成坐标运算也是一种较为简捷的方法.,答案 A,答案 重心,探究提高 在三角形中,“四心”是一组特殊的点,它们的向量表达式具有许多重要的性质.在近年高考试题中,总会出现一些新颖别致的问题,考查平面向量的相关知识点和考生分析问题、解决问题的能力.,探究提高 三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.,探究提高 解决此类问题的关键是利用平面向量的知识将条件转化为三角形中的“数量关系”,再利用解三角形的有关知识进行求解.,1.在解决平面向量的数量积问题中,要注意: (1)两个向量的夹角的定义;(2)两个向量的夹角的范围;(3)平面向量的数量积的几何意义;(4)向量的数量积的运算及其性质等. 2.平面向量的数量积的运算有两种形式: (1)依据模和夹角计算,要注意确定这两个向量的夹角,如夹角不易求或者不可求,可通过选择易求夹角和模的基底进行转化; (2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.,3.根据平行四边形法则,对于非零向量a,b,当|ab|ab|时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|ab|ab|等价于向量a,b互相垂直. 4.两个向量夹角的范围是0,在使用平面向量解决问题时要特别注意两个向量夹角可能是0或的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.,5.平面向量的综合运用主要体现三角函数和平面解析几何中,在三角函数问题中平面向量的知识主要是给出三角函数之间的关系,解题的关键还是三角函数问题;解析几何中向量知识只是给出几何量的位置和数量关系,在解题中要善于根据向量知识分析解析几何中的几何关系.,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!