第一章 有理数 导学案.doc

上传人:最*** 文档编号:1565858 上传时间:2019-10-28 格式:DOC 页数:69 大小:348.22KB
返回 下载 相关 举报
第一章 有理数 导学案.doc_第1页
第1页 / 共69页
第一章 有理数 导学案.doc_第2页
第2页 / 共69页
第一章 有理数 导学案.doc_第3页
第3页 / 共69页
点击查看更多>>
资源描述
第一章 有理数授课时间: 总第 课时 主备:授课题目:1.1 正数和负数(1) 学法:导学目标:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生导学数学的兴趣。导学重点:正数和负数概念导学难点:负数概念导学指导:一、改变旧世界:1、小学里学过哪些数请写出来: 、 、 。2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、知识新天地1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“”(读作负)号来表示,如上面的3、8、47。(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。三、学海苦无边: 1. P3第一题到第四题(直接做在课本上)。 2小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_,-4万元表示_。3已知下列各数:,3.14,+3065,0,-239;则正数有_;负数有_。4下列结论中正确的是 ( )A0既是正数,又是负数BO是最小的正数C0是最大的负数 D0既不是正数,也不是负数5给出下列各数:-3,0,+5,+3.1,2004,+2010;其中是负数有 ( )A2个B3个C4个D5个四、金秋烂漫时:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。五、万里长征路:1零下15,表示为_,比O低4的温度是_。2地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_地,最低处为_地3“甲比乙大-3岁”表示的意义是_。4如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。授课时间: 总第 课时 主备:授课题目:1.1 正数和负数(2) 学法:导学目标:1、会用正、负数表示具有相反意义的量;2、通过正、负数导学,培养学生应用数学知识的意识;导学重点:用正、负数表示具有相反意义的量;导学难点:实际问题中的数量关系;导学指导:一、改变旧世界. 通过上节课的导学,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用_ 和_ 来分别表示它们。问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明。参考例子:温度表示中的零上,零下和零度。二.知识新天地问题:(课本第4页例题)先引导学生分析,再让学生独立完成例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;例(2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率;解:(1)这个月小明体重增长_ ,小华体重增长_ ,小强体重增长_ ;2)六个国家2001年商品进出口总额的增长率:美国_ 德国_ 法国_ 英国_ 意大利_ 中国_ 三、学海苦无边1课本第4页练习2、阅读思考 (课本第8页)用正负数表示加工允许误差; 问题:直径为30.032mm和直径为29.97的零件是否合格?四、金秋烂漫时1、本节课你有那些收获? 2、还有没解决的问题吗? 五、万里长征路(1)甲冷库的温度是-12C,乙冷库的温度比甲冷酷低5C,则乙冷库的温度 ;(2)一种零件的内径尺寸在图纸上是90.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少? 授课时间: 总第 课时: 主备:授课题目:1.2.1 有理数 学法:导学目标: 1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;导学重点:正确理解有理数的概念导学难点:正确理解分类的标准和按照一定标准分类导学指导:一、改变旧世界1、通过两节课的导学,那么你能写出3个不同类的数吗?.(4名学生板书)二、知识新天地问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来 分为 类,分别是: 引导归纳: 统称为整数, 统称为有理数。问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳 2、正数集合与负数集合所有的正数组成 集合,所有的负数组成 集合三、学海苦无边1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -, -5, , , 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合四、金秋烂漫时: 有理数分类 或者 五、万里长征路1、下列说法中不正确的是( )A-3.14既是负数,分数,也是有理数 B0既不是正数,也不是负数,但是整数c-2000既是负数,也是整数,但不是有理数 DO是正数和负数的分界2、在下表适当的空格里画上“”号有理数整数分数正整数负分数自然数-8是-2.25是是0是 授课时间: 总第 课时: 主备:授课题目:1.2.2数轴 学法:导学目标: 1、掌握数轴概念,理解数轴上的点和有理数的对应关系; 2、会正确地画出数轴,利用数轴上的点表示有理数; 3、领会数形结合的重要思想方法;重点难点:数轴的概念与用数轴上的点表示有理数;导学指导一、改变旧世界1、观察下面的温度计,读出温度.分别是 C、 C、 C;2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境?东 汽车站请同学们分小组讨论,交流合作,动手操作二、知识新天地1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗? 2、自己动手操作,看看可以表示有理数的直线必须满足什么条件?引导归纳:1)、画数轴需要三个条件,即 、 方向和 长度。2)数轴三、学海苦无边 1、请你画好一条数轴 2、利用上面的数轴表示下列有理数 1.5, 2, 2, 2.5, , 0;3、 写出数轴上点A,B,C,D,E所表示的数: 4、寻找规律1)、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2)、每个数到原点的距离是多少?由此你又有什么发现?3)、进一步引导学生完成P9归纳四、金秋烂漫时:画数轴需要三个条件是什么?五、万里长征路1、在数轴上,表示数-3,2.6,0,-1的点中,在原点左边的点有 个。2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是( )A.-5, B.-4 C.-3 D.-2 3、你觉得数轴上的点表示数的大小与点的位置有什么关系? 授课时间: 总第 课时 主备:授课题目:1.2.3 相反数 学法:导学目标:1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形结合思想;导学重点:求一个已知数的相反数;导学难点:根据相反数的意义化简符号。导学指导一、改变旧世界1、数轴的三要素是什么?在下面画出一条数轴: 2、在上面的数轴上描出表示5、2、5、+2 这四个数的点。3、观察上图并填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。 从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是 ,它们分别在原点的左边和右边,我们说,这两点关于原点对称。二、知识新天地自学课本第10、11的内容并填空: 1、相反数的概念像2和2、5和5、3和3这样,只有 不同的两个数叫做互为相反数。2、练习(1)、2.5的相反数是 ,和 是互为相反数, 的相反数是2010;(2)、a和 互为相反数,也就是说,a是 的相反数例如a=7时,a=7,即7的相反数是7. a=5时,a=(5),“(5)”读作“5的相反数”,而5的相反数是5,所以,(5)=5你发现了吗,在一个数的前面添上一个“”号,这个数就成了原数的 (3)简化符号:(0.75)= ,(68)= ,(0.5 )= ,(3.8)= ;(4)、0的相反数是 .3、数轴上表示相反数的两个点和原点的距离 。 三、学海苦无边: P11第1、2、3题四、金秋烂漫时:1、本节课你有那些收获? 2、还有没解决的问题吗? 五、万里长征路1.在数轴上标出3,1.5,0各数与它们的相反数。2.1.6的相反数是 ,2x的相反数是 ,a-b的相反数是 ;3. 相反数等于它本身的数是 ,相反数大于它本身的数是 ;4.填空:(1)如果a13,那么a ;(2)如果-a5.4,那么a ;(3)如果x6,那么x ;(4)x9,那么x ;5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。 授课时间: 总第 课时 主备: 授课题目:1.2.4绝对值 学法: 导学目标:1、理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法;3、体验运用直观知识解决数学问题的成功;重点难点:绝对值的概念与两个负数的大小比较导学指导一、改变旧世界问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近) 二、知识新天地1、由上问题可以知道,10到原点的距离是 ,10到原点的距离也是 到原点的距离等于10的数有 个,它们的关系是一对 。这时我们就说10的绝对值是10,10的绝对值也是10;例如,3.8的绝对值是3.8;17的绝对值是17;6的绝对值是 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。2、练习(1)、式子-5.7表示的意义是 。(2)、2的绝对值表示它离开原点的距离是 个单位,记作 ;(3)、24= . 3.1= ,= ,0= ;3、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。用式子表示就是:1)、当a是正数(即a0)时,a= ;2)、当a是负数(即a0)时,a= ;3)、当a=0时,a= ; 4、随堂练习 P12第1、2大题(直接做在课本上)5、阅读思考,发现新知阅读P12问题P13第12行,你有什么发现吗?在数轴上表示的两个数,右边的数总要 左边的数。也就是:1)、正数 0,负数 0,正数大于负数。2)、两个负数,绝对值大的 。三、学海苦无边:1、自学例题 P13 (教师指导)2、比较下列各对数的大小:3和5; 2.5和2.25 四、金秋烂漫时:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。五、万里长征路1如果,则的取值范围是 ( ) AOBOCODO2,则; ,则3如果,则,4绝对值等于其相反数的数一定是( ) A负数 B正数 C负数或零 D正数或零授课时间: 总第 课时 主备:授课题目:11.3.1有理数的加法(1) 学法:导学目标:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2、会利用有理数加法运算解决简单的实际问题;导学重点:有理数加法法则导学难点:异号两数相加导学指导一、改变旧世界1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4(2),蓝队的净胜球数为 1(1)。这里用到正数和负数的加法。那么,怎样计算4(2)下面我们一起借助数轴来讨论有理数的加法。二、知识新天地1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是: 2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了 米。这个问题用算式表示就是: 如图所示: 3)如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:先向东走3米,再向西走5米,这个人从起点向( )走了( )米;先向东走5米,再向西走5米,这个人从起点向( )走了( )米;先向西走5米,再向东走5米,这个人从起点向( )走了( )米。写出这三种情况运动结果的算式 5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了 米。写成算式就是 2、师生归纳两个有理数相加的几种情况。3你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取 的符号,并把 相加。(2)绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 ;(3)一个数同0相加,仍得 。4.学海苦无边 例1 计算(自己动动手吧!) (1) (3)(9); (2) (4.7)3.9. 例2 (自己独立完成)四、学海苦无边:1填空:(口答) (1)(4)+(6)= ; (2)3(8)= ;(4)7(7)= ; (4)(9)1 = ;(5)(6)+0 = ; (6)0+(3) = ; 2. 课本P18第1、2题五、金秋烂漫时:有理数加法法则:六、万里长征路:1判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。2已知a= 8,b= 2; (1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值。授课时间: 总第 课时 主备:授课题目:1.3.1有理数的加法(2) 学法:导学目标:掌握加法运算律并能运用加法运算律简化运算;导学重点:运用加法运算律简化运算;导学难点:灵活运用加法运算律简化运算导学指导一、改变旧世界1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面: 、 2、计算 30 +(20)= (20)+30= 8 +(5) +(4)= 8 + (5)+(4)=思考:观察上面的式子与计算结果,你有什么发现?二、知识新天地1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学导学的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和 .式子表示为 三个数相加,先把前两个数相加,或者先把后两个数相加,和 用式子表示为 想想看,式子中的字母可以是哪些数? 例1 计算: 1)16 +(25)+ 24 +(35) 2)(2.48)+(+4.33)+(7.52)+(4.33) 例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下。三、学海苦无边课本P20页练习 1、2 四、金秋烂漫时:你会用加法交换律、结合律简化运算了吗? 五、万里长征路1计算:(1)(7)+ 11 + 3 +(2); (2) 2绝对值不大于10的整数有 个,它们的和 是 .3、填空:(1)若a0,b0,那么ab 0(2)若a0,b0,那么ab 0(3)若a0,b0,且ab那么ab 0(4)若a0,b0,且ab那么ab 0 4某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?授课时间: 总第 课时 主备:授课题目:1.3.2有理数的减法(1) 学法:导学目标: 1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则;2、会正确进行有理数减法运算;3、体验把减法转化为加法的转化思想;导学重点:有理数减法法则和运算导学难点:有理数减法法则和运算导学指导一、改变旧世界1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 154米,两处的高度相差多少呢?试试看,计算的算式应该是 .能算出来吗,画草图试试2、长春某天的气温是2C3C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)显然,这天的温差是3(2);想想看,温差到底是多少呢?那么,3(2)= ;二、知识新天地1、还记得吗,被减数、减数差之间的关系是:被减数减数= ;差+减数= 。2、请你与同桌伙伴一起探究、交流:要计算3(2)=?,实际上也就是要求:?+(2)=3,所以这个数(差)应该是 ;也就是3(2)=5;再看看,3+2= ;所以3(2) 3+2;由上你有什么发现?请写出来 .3、换两个式子计算一下,看看上面的结论还成立吗?1(3)= , 1+3= ,所以1(3) 1+3;0(3)= , 0+3= ,所以0(3) 0+3;4、师生归纳1)法则: 2)字母表示: 5、例题例1 计算:(1) (3)(5); (2)07;(3) 7.2(4.8); (4)3;请同学们先尝试解决 三、学海苦无边:课本 P23 1.2 四、金秋烂漫时:有理数减法法则:五、万里长征路1、计算:(1)(37)(47); (2)(53)16; (3)(210)87; (4)1.3(2.7); (5)(2)(1); 2分别求出数轴上下列两点间的距离:(1)表示数8的点与表示数3的点;(2)表示数2的点与表示数3的点;授课时间: 总第 课时 主备:授课题目:1.3.2 有理数的减法(2)学法:导学目标: 1、理解加减法统一成加法运算的意义;2、会将有理数的加减混合运算转化为有理数的加法运算;导学重点:有理数加减法统一成加法运算;导学难点:有理数加减法统一成加法运算导学指导一、改变旧世界1、一架飞机作特技表演,起飞后的高度变化如下表:高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米记作+4.5千米3.2千米+1.1千米1.4千米请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。2、你是怎么算出来的,方法是 二、知识新天地1、现在我们来研究(20)+(+3)(5)(+7),该怎么计算呢?还是先自己独立动动手吧!2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写如:(20)(3)(5)(7) 有加法也有减法=(20)(3)(5)(7) 先把减法转化为加法= 20357 再把加号记在脑子里,省略不写可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.4、师生完整写出解题过程5、补充例题:计算4.4(4)(2)(2)12.4;三、学海苦无边计算:(课本P24练习)(1)14+30.5; (2)-2.4+3.54.6+3.5 ;(3)(7)(+5)+(4)(10); (4); 四、金秋烂漫时:把你的收获写在这里:五、万里长征路:1、计算:1)2718+(7)32 2)授课时间: 总第 课时 主备:授课题目:1.4.1有理数的乘法(1) 学法:导学目标:1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;导学重点:有理数乘法法则导学难点:能利用有理数乘法的法则进行计算导学指导一、改变旧世界1.有理数加法法则内容是什么?2.计算(1)2+2+2= (2)(-2)+(-2)+(-2)=3.你能将上面两个算式写成乘法算式吗?二、知识新天地1、自学课本28-29页回答下列问题 (1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置? 可以表示为 . (2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?可以表示为 (3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?可以表示为 (4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?可以表示为 由上可知: (1) 23 = ; (2)(2)3 = ;(3)(2)(3)= ; (4)(2)(3)= ;(5)两个数相乘,一个数是0时,结果为0 观察上面的式子, 你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号 ,异号 ,并把 相乘。 任何数与0相乘,都得 。2、直接说出下列两数相乘所得积的符号1)5(3) ; 2)(4)6 ; 3)(7)(9); 4)0.98 ; 3、请同学们自己完成例1 计算:(1)(3)9; (2)()(-2); 归纳: 的两个数互为倒数。例2 三、学海苦无边课本30页练习1.2.3(直接做在课本上)四、金秋烂漫时:有理数乘法法则:五、万里长征路1.如果ab0,a+b0,确定a、b的正负。2.对于有理数a、b定义一种运算:a*b=2a-b,计算(-2)*3+1授课时间: 总第 课时 主备:授课题目:1.4.1有理数的乘法(2) 学法:导学目标:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;导学重点:多个有理数乘法运算符号的确定;导学难点:正确进行多个有理数的乘法运算;导学指导一、改变旧世界1、有理数乘法法则:二、知识新天地 1、 观察:下列各式的积是正的还是负的?234(5),23(-4)(5),2(-3) (-4)(5),(2) (3) (4) (5); 思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数。2、例题3,(P31页)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步? 你能看出下列式子的结果吗?如果能,理由 7.8(8.1)O (19.6)师生小结: 三、学海苦无边 计算:(课本P32练习)(1)、58(7)(0.25); (2)、;(3);四、金秋烂漫时:1.几个不是0的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数。2.几个数相乘,如果其中有一个因数为0,积等于0;五、万里长征路:一、选择1.若干个不等于0的有理数相乘,积的符号( ) A.由因数的个数决定 B.由正因数的个数决定 C.由负因数的个数决定 D.由负因数和正因数个数的差为决定2.下列运算结果为负值的是( ) A.(-7)(-6) B.(-6)+(-4) C. 0(-2)(-3) D.(-7)-(-15)3.下列运算错误的是( ) A.(-2)(-3)=6 B. C.(-5)(-2)(-4)=-40 D.(-3)(-2)(-4)=-24二、计算: 1、 ;2、 ;授课时间: 总第 课时: 主备:授课题目:1.4.1有理数的乘法(3) 学法:导学目标: 1、熟练有理数的乘法运算并能用乘法运算律简化运算;2、学生通过观察、思考、探究、讨论,主动地进行导学;导学重点:正确运用运算律,使运算简化导学难点:运用运算律,使运算简化导学指导一、改变旧世界1、请同学们计算并比较它们的结果:(1) (6)5= 5(6)=(2) 3(4)(5)= 3(4)(5)=请以小组为单位,相互检查,看计算对了吗?二、知识新天地1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?3、归纳、总结乘法交换律:两个数相乘,交换因数的位置,积 。 即:ab= 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 即:(ab)c= 4、例题4用两种方法计算 ()12 ;解法一: 解法二:三、学海苦无边:(课本P33练习)1、(85)(25)(4); 2、()15(1); 3、()30; 四、金秋烂漫时:把你的收获写在这里:五、万里长征路:1、看谁算得快,算得准(1)(7)() ; (2) 9 18;(3)9(11)+12(9); (4);授课时间: 总第 课时 主备:授课题目:1.4.2有理数的除法(1) 学法:导学目标:1、理解除法是乘法的逆运算;2、理解倒数概念,会求有理数的倒数;3、掌握除法法则,会进行有理数的除法运算;导学重点:有理数的除法法则导学难点:减少计算失误导学指导一、改变旧世界1)、小红从家里到学校,每分钟走50米,共走了20分钟。问小红家离学校有 米,列出的算式为 。2)放学时,小红仍然以每分钟50米的速度回家,应该走 分钟。列出的算式为 从上面这个例子你可以发现,有理数除法与乘法之间的关系是 3)写出下列各数的倒数-4 的倒数 ,3的倒数 ,-2的倒数 ;二、知识新天地1、小组合作完成比较大小:8(4) 8(一); (15)3 (15); (一1)(一2) (1)(一);再相互交流、并与小学里导学的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 ; 2)、两数相除,同号得 ,异号得 ,并把绝对值相 ,0除以任何一个不等于0的数,都得 ;1自学P34例5、例62.师生共同完成例7三、学海苦无边1、练习:P35 2、练习: P36第1、2题四、金秋烂漫时:有理数的除法法则:五、万里长征路1、计算 (1) ; (2) 0(-1000); (3) 375;2、练习册P21(-) 授课时间: 总第 课时: 主备:授课题目:1.4.2有理数的除法(2) 学法:导学目标: 1、学会用计算器进行有理数的除法运算;2、掌握有理数的混合运算顺序;导学重点:有理数的混合运算;导学难点:运算顺序的确定与性质符号的处理;导学指导 一、改变旧世界1、计算 : (1) (-8)(-4) (2) (-9)3 (3) (0.1)(100)2. 有理数的除法法则:二、知识新天地1.例8 计算(1)(8)+4(-2) (2)(-7)(-5)90(-15)你的计算方法是先算 法,再算 法。有理数加减乘除的混合运算顺序应该是 写出解答过程2.自学完成例9(阅读课本P36P37页内容)三、学海苦无边1、计算(P36练习)(1)6(12)(3); ( 2)3(4)+(28)7;(3)(48)8(25)(6); ( 4);2.P37练习四、金秋烂漫时:把你的收获写在这里:五、万里长征路1、选择题(1)下列运算有错误的是( ) A.(-3)=3(-3) B. C.8-(-2)=8+2 D.2-7=(+2)+(-7)(2)下列运算正确的是( ) A. ; B.0-2=-2; C.; D.(-2)(-4)=2;2、计算1)、186(2) ; 2)11+(22)3(11);授课时间: 总第 课时 主备:授课题目:.5.1有理数的乘方(1) 学法:导学目标: 1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;导学重点:有理数乘方的运算。导学难点:有理数乘方的运算。导学指导:一、改变旧世界1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.二、知识新天地1、分小组合作导学P41页内容,然后再完成好下面的问题1)叫乘方,叫做幂,在式子中 ,叫做,叫做 2)式子表示的意义是 3)从运算上看式子,可以读作,从结果上看式子,可以读作;2、将下列各式写成乘方(即幂)的形式:(1)(-2)(-2)(-2)(-2).(2)、()()()();(3)(2010个)3、例题,P41例1师生共同完成从例题1 可以得出:负数的奇次幂是 数,负数的偶次幂是 数,正数的任何次幂都是 数,0的任何正整次幂都是 ;4、思考:(2)4和24意义一样吗?为什么? 5、自学例2 (教师指导)三、学海苦无边完成P42页1,2.四、金秋烂漫时:把你的收获写在这里:五、万里长征路1、我们已经导学了五种运算,请把下表补充完整:运算加减乘除乘方运算结果和2、用乘方的意义计算下列各式:(1);(2) ; (3);3.计算 (1) ; (2) ;授课时间: 总第 课时: 主备:授课题目:1.5.1有理数的乘方(2) 学法:导学目标: 1、能确定有理数加、减、乘、除、乘方混合运算的顺序;2、会进行有理数的混合运算;3、培养并提高正确迅速的运算能力;导学重点:运算顺序的确定和性质符号的处理;导学难点:有理数的混合运算;导学指导一、改变旧世界1、在2+(6)这个式子中,存在着 种运算。2、请你们以4人一个小组讨论、交流,上面这个式子应该先算 、再算 、最后算 。二、知识新天地1、由上可以知道,在有理数的混合运算中,运算顺序是:(1)_;(2)_;(3)_;2、P43例题3,请你试练3、师生共同探讨P43例题4三、学海苦无边P44练习计算: (1)、(1)102+(2)34; (2)、(5)33;(3)、; (4)、(10)4+(4)2(3+32)2; 四、金秋烂漫时:有理数的混合运算的运算顺序是: 五、万里长征路计算1、 2、授课时间: 总第 课时: 主备:授课题目:11.5.2科学记数法 学法:导学目标:1能将一个有理数用科学记数法表示;2. 已知用科学记数法表示的数,写出原来的数;3懂得用科学记数法表示数的好处;重点难点:用科学记数法表示较大的数导学指导一、改变旧世界 1、根据乘方的意义,填写下表:10的乘方 表示的意义 运算结果结果中的0的个数10210101002 103 104 105二、知识新天地1.我们知道:光的速度约为:300000000米/秒,地球表面积约:510000000000000平方米。这些数非常大,写起来表较麻烦,能否用一个比较简单的方法来表示这两个数吗?300 000 000=5100 000 000 000=定义:把一个大于10的数表示成a10n的形式(其中a_n是_)叫做科学记数法。2.例5用科学记数法表示下列各数:(1)1 000 000= (2)57 000 000=(3)1 23 000 000 000= (4)800800= (5)10000= ( 6)12030000=归纳:用科学记数法表示一个n位整数时,10的指数比原来的整数位_ 三、学海苦无边1.课本45页练习1 、2题 2写出下列用科学记数法表示的原数:(1)8848103= (
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!