高等数学下册期末考试试题及答案

上传人:gbs****77 文档编号:10669455 上传时间:2020-04-13 格式:DOC 页数:7 大小:481.27KB
返回 下载 相关 举报
高等数学下册期末考试试题及答案_第1页
第1页 / 共7页
高等数学下册期末考试试题及答案_第2页
第2页 / 共7页
高等数学下册期末考试试题及答案_第3页
第3页 / 共7页
点击查看更多>>
资源描述
高数高等数学A(下册)期末考试试题大题一二三四五六七小题12345得分一、 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,则 2、设,则 3、曲面在点处的切平面方程为 4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数在处收敛于 ,在处收敛于 5、设为连接与两点的直线段,则 以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级二、 解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程2、求由曲面及所围成的立体体积3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?4、设,其中具有二阶连续偏导数,求5、计算曲面积分其中是球面被平面截出的顶部三、 (本题满分9分) 抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值 (本题满分10分)计算曲线积分,其中为常数,为由点至原点的上半圆周四、 (本题满分10分)求幂级数的收敛域及和函数五、 (本题满分10分)计算曲面积分,其中为曲面的上侧六、 (本题满分6分)设为连续函数,其中是由曲面与所围成的闭区域,求 -备注:考试时间为2小时;考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;不得带走试卷。高等数学A(下册)期末考试试题【A卷】参考解答与评分标准 2009年6月一、 填空题【每小题4分,共20分】 1、; 2、;3、; 4、3,0; 5、.二、 试解下列各题【每小题7分,共35分】1、解:方程两边对求导,得, 从而,.【4】该曲线在处的切向量为.【5】故所求的切线方程为.【6】法平面方程为 即 .【7】、解:,该立体在面上的投影区域为.【2】故所求的体积为.【7】、解:由,知级数发散【3】 又,.故所给级数收敛且条件收敛【7】、解:, 【3】【7】、解:的方程为,在面上的投影区域为又,.【】故.【7】三、【9分】解:设为该椭圆上的任一点,则点到原点的距离为【1】令,则由,解得,于是得到两个可能极值点【7】又由题意知,距离的最大值和最小值一定存在,所以距离的最大值与最小值分别在这两点处取得故 【9】四、【10分】 解:记与直线段所围成的闭区域为,则由格林公式,得【5】而【8】 【10】五、【10分】解:,收敛区间为 【2】又当时,级数成为,发散;当时,级数成为,收敛【4】故该幂级数的收敛域为【5】令(),则, () 【8】于是,().【10】六、【10分】解:取为的下侧,记与所围成的空间闭区域为,则由高斯公式,有. 【5】 .【7】而. 【9】. 【10】七、【6分】解:. 【2】. 【4】故 【6】第 7 页 共 2 页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!