资源描述
考情概览备考定向高考大题专项突破四高考中的立体几何考情概览备考定向必备知识预案自诊关键能力学案突破-2-2-2-2-从近五年的高考试题来看,立体几何是历年高考的重点,约占整个试卷的15%,通常以一大两小的模式命题,以中、低档难度为主.三视图、简单几何体的表面积与体积、点、线、面位置关系的判定与证明以及空间角的计算是考查的重点内容,前者多以客观题的形式命题,后者主要以解答题的形式加以考查.着重考查推理论证能力和空间想象能力,而且对数学运算的要求有加强的趋势.转化与化归思想贯穿整个立体几何的始终.考情概览备考定向必备知识预案自诊关键能力学案突破-3-3-3-3-题型一题型二题型三题型四题型一平行与垂直关系的证明(多维探究)类型一适合用几何法证明例1(2017江苏,15)如图,在三棱锥A-BCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.考情概览备考定向必备知识预案自诊关键能力学案突破-4-4-4-4-题型一题型二题型三题型四 证明: (1)在平面ABD内,因为ABAD,EFAD,所以EFAB.又因为EF平面ABC,AB平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面ABD平面BCD=BD,BC平面BCD,BCBD,所以BC平面ABD.因为AD平面ABD,所以BCAD.又ABAD,BCAB=B,AB平面ABC,BC平面ABC,所以AD平面ABC.又因为AC平面ABC,所以ADAC.考情概览备考定向必备知识预案自诊关键能力学案突破-5-5-5-5-题型一题型二题型三题型四解题心得解题心得从解题方法上说,由于线线平行(垂直)、线面平行(垂直)、面面平行(垂直)之间可以相互转化,因此整 个解题过程始终沿着线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转化途径进行.考情概览备考定向必备知识预案自诊关键能力学案突破-6-6-6-6-题型一题型二题型三题型四对点训练对点训练1在四棱锥P-ABCD中,底面ABCD为正方形,PA平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(1)求证:PB平面FAC;(2)求三棱锥P-EAD的体积;(3)求证:平面EAD平面FAC.考情概览备考定向必备知识预案自诊关键能力学案突破-7-7-7-7-题型一题型二题型三题型四(1)证明: 连接BD,与AC交于点O,连接OF.在PBD中,O,F分别是BD,PD的中点,所以OFPB.又因为OF平面FAC,PB平面FAC,所以PB平面FAC.考情概览备考定向必备知识预案自诊关键能力学案突破-8-8-8-8-题型一题型二题型三题型四(2)解: 因为PA平面ABCD,所以PA为三棱锥P-ABD的高.因为PA=AB=2,底面ABCD是正方形,(3)证明: 因为AD平面PAB,PB平面PAB,所以ADPB.在等腰直角三角形PAB中,AEPB,又AEAD=A,AE平面EAD,AD平面EAD,所以PB平面EAD,又OFPB,所以OF平面EAD,又OF平面FAC,所以平面EAD平面FAC.考情概览备考定向必备知识预案自诊关键能力学案突破-9-9-9-9-题型一题型二题型三题型四类型二适合用向量法证明例2如图,在四棱锥P-ABCD中,PA平面ABCD,底面ABCD是菱形,PA=AB=2,BAD=60,E是PA的中点.求证:(1)直线PC平面BDE;(2)BDPC.考情概览备考定向必备知识预案自诊关键能力学案突破-10-10-10-10-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-11-11-11-11-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-12-12-12-12-题型一题型二题型三题型四解题心得解题心得利用空间向量证明空间的平行或垂直关系,首先建立空间直角坐标系,然后用坐标表示直线的方向向量及平面的法向量,最后利用向量的数量积或数乘运算证明.用向量方法证明直线ab,只需证明向量a=b(R)(其中a,b分别是直线a与b的方向向量);证直线和平面垂直,只需证直线的方向向量与平面的法向量共线;证直线和平面平行,除证直线的方向向量与平面的法向量垂直外,还需强调直线在平面外.考情概览备考定向必备知识预案自诊关键能力学案突破-13-13-13-13-题型一题型二题型三题型四对点训练对点训练2(2017北京海淀一模,理18)如图,由直三棱柱ABC-A1B1C1和四棱锥D-BB1C1C构成的几何体中,BAC=90,AB=1,BC=BB1=2,C1D=CD= ,平面CC1D平面ACC1A1.(1)求证:ACDC1.(2)若M为DC1的中点,求证:AM平面DBB1.(3)在线段BC上是否存在点P,使直线DP与考情概览备考定向必备知识预案自诊关键能力学案突破-14-14-14-14-题型一题型二题型三题型四(1)证明: 在直三棱柱ABC-A1B1C1中,CC1平面ABC,故ACCC1,由平面CC1D平面ACC1A1,且平面CC1D平面ACC1A1=CC1,所以AC平面CC1D,又C1D平面CC1D,所以ACDC1.(2)证明: 在直三棱柱ABC-A1B1C1中,AA1平面ABC,所以AA1AB,AA1AC,又BAC=90,所以,如图建立空间直角坐标系,依据已知条件可得考情概览备考定向必备知识预案自诊关键能力学案突破-15-15-15-15-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-16-16-16-16-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-17-17-17-17-题型一题型二题型三题型四题型二与平行、垂直有关的存在性问题例3如图,在四棱锥P-ABCD中,平面PAD平面ABCD,PAPD,PA=PD,ABAD,AB=1,AD=2,AC=CD= .(1)求证:PD平面PAB.(2)求直线PB与平面PCD所成角的正弦值.(3)在棱PA上是否存在点M,使得BM平面PCD?若存在,求 的值;若不存在,说明理由.考情概览备考定向必备知识预案自诊关键能力学案突破-18-18-18-18-题型一题型二题型三题型四(1)证明: 因为平面PAD平面ABCD,ABAD,所以AB平面PAD.所以ABPD.又因为PAPD,所以PD平面PAB.(2)解: 取AD的中点O,连接PO,CO.因为PA=PD,所以POAD.又因为PO平面PAD,平面PAD平面ABCD,所以PO平面ABCD.因为CO平面ABCD,所以POCO.因为AC=CD,所以COAD.如图建立空间直角坐标系.考情概览备考定向必备知识预案自诊关键能力学案突破-19-19-19-19-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-20-20-20-20-题型一题型二题型三题型四解题心得解题心得1.先假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.2.空间向量最适合解决这类探索性问题,解题时无需进行复杂的作图、论证、推理,只需把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“方程或方程组是否有解”,即通过坐标运算进行判断,这就是计算推理法.考情概览备考定向必备知识预案自诊关键能力学案突破-21-21-21-21-题型一题型二题型三题型四对点训练对点训练3(2017北京海淀区二模,理17)如图,三棱锥P-ABC,侧棱PA=2,底面三角形ABC为正三角形,边长为2,顶点P在平面ABC上的射影为D,有ADDB,且DB=1.(1)求证:AC平面PDB.(2)求二面角P-AB-C的余弦值.(3)线段PC上是否存在点E使得PC平面ABE?如果存在,求 的值;如果不存在,请说明理由.考情概览备考定向必备知识预案自诊关键能力学案突破-22-22-22-22-题型一题型二题型三题型四(1)证明: 因为ADDB,且DB=1,AB=2,所以AD= ,所以DBA=60.因为ABC为正三角形,所以CAB=60,又由已知可知ACBD为平面四边形,所以DBAC.因为AC平面PDB,DB平面PDB,所以AC平面PDB.(2)解: 由点P在平面ABC上的射影为D,可得PD平面ACBD,所以PDDA,PDDB.如图,以D为原点,DB为x轴,DA为y轴,DP为z轴,建立空间直角坐标系,考情概览备考定向必备知识预案自诊关键能力学案突破-23-23-23-23-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-24-24-24-24-题型一题型二题型三题型四题型三求空间角(多维探究)类型一求异面直线所成的角例4如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC.(1)求证:平面AEC平面AFC;(2)求直线AE与直线CF所成角的余弦值.考情概览备考定向必备知识预案自诊关键能力学案突破-25-25-25-25-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-26-26-26-26-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-27-27-27-27-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-28-28-28-28-题型一题型二题型三题型四对点训练对点训练4(2017江苏无锡一模,15)如图,已知正四棱锥P-ABCD中,PA=AB=2,点M,N分别在PA,BD上,且(1)求异面直线MN与PC所成角的大小;(2)求二面角N-PC-B的余弦值.考情概览备考定向必备知识预案自诊关键能力学案突破-29-29-29-29-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-30-30-30-30-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-31-31-31-31-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-32-32-32-32-题型一题型二题型三题型四类型二求直线与平面所成的角例5(2017北京东城区二模,理17)如图,在几何体ABCDEF中,平面ADE平面ABCD,四边形ABCD为菱形,且DAB=60,EA=ED=AB=2EF,EFAB,M为BC中点.(1)求证:FM平面BDE;(2)求直线CF与平面BDE所成角的正弦值.考情概览备考定向必备知识预案自诊关键能力学案突破-33-33-33-33-题型一题型二题型三题型四 (1)证明: 取CD中点N,连接MN,FN.因为N,M分别为CD,BC中点,所以MNBD.又BD平面BDE,MN平面BDE,所以MN平面BDE,因为EFAB,AB=2EF,所以EFCD,EF=DN.所以四边形EFND为平行四边形.所以FNED.又ED平面BDE,FN平面BDE,所以FN平面BDE,又N为FN和MN交点,所以平面MFN平面BDE.又FM平面MFN,所以FM平面BDE.考情概览备考定向必备知识预案自诊关键能力学案突破-34-34-34-34-题型一题型二题型三题型四(2)解: 取AD中点O,连接EO,BO.因为EA=ED,所以EOAD.因为平面ADE平面ABCD,所以EO平面ABCD,EOBO.因为AD=AB,DAB=60,所以三角形ADB为等边三角形.因为O为AD中点,所以ADBO.考情概览备考定向必备知识预案自诊关键能力学案突破-35-35-35-35-题型一题型二题型三题型四解题心得解题心得求线面角可以用几何法,即“先找,后证,再求”,也可以通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.考情概览备考定向必备知识预案自诊关键能力学案突破-36-36-36-36-题型一题型二题型三题型四对点训练对点训练5(2017山西太原三模,理19)如图,在三棱柱ABC-A1B1C1中,侧面ACC1A1底面ABC,A1AC=60,AC=2AA1=4,点D,E分别是AA1,BC的中点.(1)求证:DE平面A1B1C;(2)若AB=2,BAC=60,求直线DE与平面ABB1A1所成角的正弦值.考情概览备考定向必备知识预案自诊关键能力学案突破-37-37-37-37-题型一题型二题型三题型四(1)证明: 取AC的中点F,连接DF,EF,E是BC的中点,EFAB,ABC-A1B1C1是三棱柱,ABA1B1,EFA1B1,EF平面A1B1C,D是AA1的中点,DFA1C,DF平面A1B1C,又EFDF=F,平面DEF平面A1B1C,DE平面A1B1C;(2)解: 过点A1作A1OAC,垂足为O,连接OB,侧面ACC1A1底面ABC,A1O平面ABC,A1OOB,A1OOC,A1AC=60,AA1=2,OA=1,OA1= ,AB=2,OAB=60,由余弦定理得OB2=OA2+AB2-2OAABcosBAC=3,考情概览备考定向必备知识预案自诊关键能力学案突破-38-38-38-38-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-39-39-39-39-题型一题型二题型三题型四类型三求二面角例6(2017全国,理18)如图,在四棱锥P-ABCD中,ABCD,且BAP=CDP=90.(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,求二面角A-PB-C的余弦值.考情概览备考定向必备知识预案自诊关键能力学案突破-40-40-40-40-题型一题型二题型三题型四(1)由已知BAP=CDP=90,得ABAP,CDPD.由于ABCD,故ABPD,从而AB平面PAD.又AB平面PAB,所以平面PAB平面PAD.(2)在平面PAD内作PFAD,垂足为F.由(1)可知,AB平面PAD,故ABPF,可得PF平面ABCD.考情概览备考定向必备知识预案自诊关键能力学案突破-41-41-41-41-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-42-42-42-42-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-43-43-43-43-题型一题型二题型三题型四解题心得如图,设平面,的法向量分别为n1,n2,二面角的平面角为(0),则|cos |=|cos|= .结合实际图形判断所求角是锐角还是钝角.考情概览备考定向必备知识预案自诊关键能力学案突破-44-44-44-44-题型一题型二题型三题型四对点训练对点训练6(2017全国,理19)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,BAD=ABC=90,E是PD的中点.(1)证明:直线CE平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45,求二面角M-AB-D的余弦值. 考情概览备考定向必备知识预案自诊关键能力学案突破-45-45-45-45-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-46-46-46-46-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-47-47-47-47-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-48-48-48-48-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-49-49-49-49-题型一题型二题型三题型四题型四求空间点到面的距离例7如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,BAD=60,四边形BDEF是矩形,平面BDEF平面ABCD,DE=2,M为线段BF的中点.(1)求M到平面DEC的距离及三棱锥M-CDE的体积;(2)求证:DM平面ACE考情概览备考定向必备知识预案自诊关键能力学案突破-50-50-50-50-题型一题型二题型三题型四(1)解: 设ACBD=O,以O为原点,OB为x轴,OC为y轴,过O作平面ABCD的垂线为z轴,建立空间直角坐标系,考情概览备考定向必备知识预案自诊关键能力学案突破-51-51-51-51-题型一题型二题型三题型四ACDM,AEDM,ACAE=A,DM平面ACE.考情概览备考定向必备知识预案自诊关键能力学案突破-52-52-52-52-题型一题型二题型三题型四考情概览备考定向必备知识预案自诊关键能力学案突破-53-53-53-53-题型一题型二题型三题型四对点训练对点训练7(2017贵州贵阳一模)底面为菱形的直棱柱ABCD-A1B1C1D1中,E,F分别为棱A1B1,A1D1的中点.(1)在图中作一个平面,使得BD,且平面AEF;(不必给出证明过程,只要求作出与直棱柱ABCD-A1B1C1D1的截面) (2)若AB=AA1=2,BAD=60,求点C到所作截面的距离.考情概览备考定向必备知识预案自诊关键能力学案突破-54-54-54-54-题型一题型二题型三题型四解: (1)取B1C1的中点G,D1C1的中点H,连接BG,GH,DH,则平面BDHG就是所求的平面,与直棱柱ABCD-A1B1C1D1的截面即为面BDHG.(2)取BC中点M,AB=AA1=2,BAD=60,以D为原点,DA为x轴,DM为y轴,DD1为z轴,建立空间直角坐标系,
展开阅读全文