国内外信息安全研究现状及发展趋势互联网

上传人:沈*** 文档编号:65634580 上传时间:2022-03-24 格式:DOC 页数:36 大小:188.50KB
返回 下载 相关 举报
国内外信息安全研究现状及发展趋势互联网_第1页
第1页 / 共36页
国内外信息安全研究现状及发展趋势互联网_第2页
第2页 / 共36页
国内外信息安全研究现状及发展趋势互联网_第3页
第3页 / 共36页
点击查看更多>>
资源描述
- - 36 - 国内外信息安全研究现状及发展趋势国内外信息安全研究现状及发展趋势(一)冯登国 随着信息技术的发展与应用,信息安全的内涵在不断的延伸,从最初的信息保密性发展到信息的完整性、可用性、可控性和不可否认性,进而又发展为攻(攻击)、防(防范)、测(检测)、控(控制)、管(管理)、评(评估)等多方面的基础理论和实施技术。信息安全是一个综合、交叉学科领域,它要综合利用数学、物理、通信和计算机诸多学科的长期知识积累和最新发展成果,进行自主创新研究,加强顶层设计,提出系统的、完整的,协同的解决方案。与其他学科相比,信息安全的研究更强调自主性和创新性,自主性可以避免陷门,体现国家主权;而创新性可以抵抗各种攻击,适应技术发展的需求。 就理论研究而言,一些关键的基础理论需要保密,因为从基础理论研究到实际应用的距离很短。现代信息系统中的信息安全其核心问题是密码理论及其应用,其基础是可信信息系统的构作与评估。总的来说,目前在信息安全领域人们所关注的焦点主要有以下几方面:1) 密码理论与技术;2) 安全协议理论与技术;3) 安全体系结构理论与技术;4) 信息对抗理论与技术;5) 网络安全与安全产品。下面就简要介绍一下国内外在以上几方面的研究现状及发展趋势。 1国内外密码理论与技术研究现状及发展趋势 密码理论与技术主要包括两部分,即基于数学的密码理论与技术(包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术)。 自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制,但比较流行的主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA;另一类是基于离散对数问题的,比如ElGamal公钥密码和影响比较大的椭圆曲线公钥密码。由于分解大整数的能力日益增强,所以对RSA的安全带来了一定的威胁。目前768比特模长的RSA已不安全。一般建议使用1024比特模长,预计要保证20年的安全就要选择1280比特的模长,增大模长带来了实现上的难度。而基于离散对数问题的公钥密码在目前技术下512比特模长就能够保证其安全性。特别是椭圆曲线上的离散对数的计算要比有限域上的离散对数的计算更困难,目前技术下只需要160比特模长即可,适合于智能卡的实现,因而受到国内外学者的广泛关注。国际上制定了椭圆曲线公钥密码标准IEEEP1363,RSA等一些公司声称他们已开发出了符合该标准的椭圆曲线公钥密码。我国学者也提出了一些公钥密码,另外在公钥密码的快速实现方面也做了一定的工作,比如在RSA的快速实现和椭圆曲线公钥密码的快速实现方面都有所突破。公钥密码的快速实现是当前公钥密码研究中的一个热点,包括算法优化和程序优化。另一个人们所关注的问题是椭圆曲线公钥密码的安全性论证问题。 公钥密码主要用于数字签名和密钥分配。当然,数字签名和密钥分配都有自己的研究体系,形成了各自的理论框架。目前数字签名的研究内容非常丰富,包括普通签名和特殊签名。特殊签名有盲签名,代理签名,群签名,不可否认签名,公平盲签名,门限签名,具有消息恢复功能的签名等,它与具体应用环境密切相关。显然,数字签名的应用涉及到法律问题,美国联邦政府基于有限域上的离散对数问题制定了自己的数字签名标准(DSS),部分州已制定了数字签名法。法国是第一个制定数字签名法的国家,其他国家也正在实施之中。在密钥管理方面,国际上都有一些大的举动,比如1993年美国提出的密钥托管理论和技术、国际标准化组织制定的X.509标准(已经发展到第3版本)以及麻省里工学院开发的Kerboros协议(已经发展到第5版本)等,这些工作影响很大。密钥管理中还有一种很重要的技术就是秘密共享技术,它是一种分割秘密的技术,目的是阻止秘密过于集中,自从1979年Shamir提出这种思想以来,秘密共享理论和技术达到了空前的发展和应用,特别是其应用至今人们仍十分关注。我国学者在这些方面也做了一些跟踪研究,发表了很多论文,按照X.509标准实现了一些CA。但没有听说过哪个部门有制定数字签名法的意向。目前人们关注的是数字签名和密钥分配的具体应用以及潜信道的深入研究。 认证码是一个理论性比较强的研究课题,自80年代后期以来,在其构造和界的估计等方面已经取得了长足的发展,我国学者在这方面的研究工作也非常出色,影响较大。目前这方面的理论相对比较成熟,很难有所突破。另外,认证码的应用非常有限,几乎停留在理论研究上,已不再是密码学中的研究热点。 Hash函数主要用于完整性校验和提高数字签名的有效性,目前已经提出了很多方案,各有千秋。美国已经制定了Hash标准-SHA-1,与其数字签名标准匹配使用。由于技术的原因,美国目前正准备更新其Hash标准,另外,欧洲也正在制定Hash标准,这必然导致Hash函数的研究特别是实用技术的研究将成为热点。 在身份识别的研究中,最令人瞩目的识别方案有两类:一类是1984年Shamir提出的基于身份的识别方案,另一类是1986年Fiat等人提出的零知识身份识别方案。随后,人们在这两类方案的基础上又提出了一系列实用的身份识别方案,比如,Schnorr识别方案、Okamoto 识别方案、Guillou-Quisquater识别方案、Feige-Fiat-Shamir识别方案等。目前人们所关注的是身份识别方案与具体应用环境的有机结合。 序列密码主要用于政府、军方等国家要害部门,尽管用于这些部门的理论和技术都是保密的,但由于一些数学工具(比如代数、数论、概率等)可用于研究序列密码,其理论和技术相对而言比较成熟。从八十年代中期到九十年代初,序列密码的研究非常热,在序列密码的设计与生成以及分析方面出现了一大批有价值的成果,我国学者在这方面也做了非常优秀的工作。虽然,近年来序列密码不是一个研究热点,但有很多有价值的公开问题需要进一步解决,比如自同步流密码的研究,有记忆前馈网络密码系统的研究,混沌序列密码和新研究方法的探索等。另外,虽然没有制定序列密码标准,但在一些系统中广泛使用了序列密码比如RC4,用于存储加密。事实上,欧洲的NESSIE计划中已经包括了序列密码标准的制定,这一举措有可能导致序列密码研究热。 美国早在1977年就制定了自己的数据加密标准(一种分组密码),但除了公布具体的算法之外,从来不公布详细的设计规则和方法。随着美国的数据加密标准的出现,人们对分组密码展开了深入的研究和讨论,设计了大量的分组密码,给出了一系列的评测准则,其他国家,如日本和苏联也纷纷提出了自己的数据加密标准。但在这些分组密码中能被人们普遍接受和认可的算法却寥寥无几。何况一些好的算法已经被攻破或已经不适用于技术的发展要求。比如美国的数据加密标准已经于1997年6月17日被攻破。美国从1997年1月起,正在征集、制定和评估新一代数据加密标准(称作AES),大约于2001年出台,目前正处于讨论和评估之中。AES活动使得国际上又掀起了一次研究分组密码的新高潮。继美国征集AES活动之后,欧洲和日本也不甘落后启动了相关标准的征集和制定工作,看起来比美国更宏伟。同时国外比如美国为适应技术发展的需求也加快了其他密码标准的更新,比如SHA-1和FIPS140-1。我国目前的做法是针对每个或每一类安全产品需要开发所用的算法,而且算法和源代码都不公开,这样一来,算法的需求量相对就比较大,继而带来了兼容性、互操作性等问题。 国外目前不仅在密码基础理论方面的研究做的很好,而且在实际应用方面也做的非常好。制定了一系列的密码标准,特别规范。算法的征集和讨论都已经公开化,但密码技术作为一种关键技术,各国都不会放弃自主权和控制权,都在争夺霸权地位。美国这次征集AES的活动就充分体现了这一点,欧洲和日本就不愿意袖手旁观,他们也采取了相应的措施,其计划比美国更宏大,投资力度更大。我国在密码基础理论的某些方面的研究做的很好,但在实际应用方面与国外的差距较大,没有自己的标准,也不规范。 目前最为人们所关注的实用密码技术是PKI技术。国外的PKI应用已经开始,开发PKI的厂商也有多家。许多厂家,如Baltimore,Entrust等推出了可以应用的PKI产品,有些公司如VerySign等已经开始提供PKI服务。网络许多应用正在使用PKI技术来保证网络的认证、不可否认、加解密和密钥管理等。尽管如此,总的说来PKI技术仍在发展中。按照国外一些调查公司的说法,PKI系统仅仅还是在做示范工程。IDC公司的Internet安全知深分析家认为:PKI技术将成为所有应用的计算基础结构的核心部件,包括那些越出传统网络界限的应用。B2B电子商务活动需要的认证、不可否认等只有PKI产品才有能力提供这些功能。 目前国际上对非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术等)非常关注,讨论也非常活跃。信息隐藏将在未来网络中保护信息免于破坏起到重要作用,信息隐藏是网络环境下把机密信息隐藏在大量信息中不让对方发觉的一种方法。特别是图象叠加、数字水印、潜信道、隐匿协议等的理论与技术的研究已经引起人们的重视。1996年以来,国际上召开了多次有关信息隐藏的专业研讨会。基于生物特征(比如手形、指纹、语音、视网膜、虹膜、脸形、DNA等)的识别理论与技术已有所发展,形成了一些理论和技术,也形成了一些产品,这类产品往往由于成本高而未被广泛采用。1969年美国哥伦比亚大学的Wiesner创造性地提出了共轭编码的概念,遗憾的是他的这一思想当时没有被人们接受。十年后,源于共轭编码概念的量子密码理论与技术才取得了令人惊异的进步,已先后在自由空间和商用光纤中完成了单光子密钥交换协议,英国BT实验室通过30公里的光纤信道实现了每秒20k比特的密钥分配。近年来,英、美、日等国的许多大学和研究机构竞相投入到量子密码的研究之中,更大的计划在欧洲进行。到目前为止,主要有三大类量子密码实现方案:一是基于单光子量子信道中测不准原理的;二是基于量子相关信道中Bell原理的;三是基于两个非正交量子态性质的。但有许多问题还有待于研究。比如,寻找相应的量子效应以便提出更多的量子密钥分配协议,量子加密理论的形成和完善,量子密码协议的安全性分析方法研究,量子加密算法的开发,量子密码的实用化等。总的来说,非数学的密码理论与技术还处于探索之中。 密码技术特别是加密技术是信息安全技术中的核心技术,国家关键基础设施中不可能引进或采用别人的加密技术,只能自主开发。目前我国在密码技术的应用水平方面与国外还有一定的差距。国外的密码技术必将对我们有一定的冲击力,特别是在加入WTO组织后这种冲击力只会有增无减。有些做法必须要逐渐与国际接轨,不能再采用目前这种关门造车的做法,因此,我们必须要有我们自己的算法,自己的一套标准,自己的一套体系,来对付未来的挑战。实用密码技术的基础是密码基础理论,没有好的密码理论不可能有好的密码技术、也不可能有先进的、自主的、创新的密码技术。因此,首先必须持之以恒地坚持和加强密码基础理论研究,与国际保持同步,这方面的工作必须要有政府的支持和投入。另一方面,密码理论研究也是为了应用,没有应用的理论是没有价值的。我们应在现有理论和技术基础上充分吸收国外先进经验形成自主的、创新的密码技术以适应国民经济的发展。特别值得一提的是欧洲大计划NESSIE工程必将大大推动密码学的研究和发展,我们应予以密切关注。国内外信息安全研究现状及发展趋势(二)2国内外安全协议理论与技术研究现状及发展趋势 安全协议的研究主要包括两方面内容,即安全协议的安全性分析方法研究和各种实用安全协议的设计与分析研究。安全协议的安全性分析方法主要有两类,一类是攻击检验方法,一类是形式化分析方法,其中安全协议的形式化分析方法是安全协议研究中最关键的研究问题之一,它的研究始于80年代初,目前正处于百花齐放,充满活力的状态之中。许多一流大学和公司的介入,使这一领域成为研究热点。随着各种有效方法及思想的不断涌现,这一领域在理论上正在走向成熟。 目前,在这一领域中比较活跃的群体包括:以Meadows 及Syverson为代表的美国空军研究实验室;以Lowe为代表的英国Leicester学院;以Schneider为代表的英国London学院;以Roscoe为代表的英国Oxford学院;以Millen为代表的美国Carnegie Mellon学院;以Stoller为代表的美国Indiana大学;以Thayer、Herzon及Guttman为代表的美国MITRE公司;以Bolignano为代表的美国IBM公司;以J.Mitchell及M.Mitchell为代表的美国Stanford大学;以Stubblebine为代表的美国AT&T实验室;以Paulson为代表的英国Cambridge学院;以Abadi为代表的美国数据设备公司系统研究中心等等。除了这些群体外,许多较有实力的计算机科学系及公司都有专业人员从事这一领域的研究。 从大的方面讲,在协议形式化分析方面比较成功的研究思路可以分为三种:第一种思路是基于推理知识和信念的模态逻辑;第二种思路是基于状态搜索工具和定理证明技术;第三种思路是基于新的协议模型发展证明正确性理论。沿着第一种思路,Brackin推广了GNY逻辑并给出了该逻辑的高阶逻辑(HOL)理论,之后利用HOL理论自动证明在该系统内与安全相关的命题;Kindred则提出安全协议的理论生成,解决更广的问题:给定一个逻辑和协议,生成协议的整个理论的有限表示。尽管也有人提出不同的认证逻辑来检查不同的攻击,但是与前两项工作相比是不重要的。第二种思路是近几年研究的焦点,大量一般目的的形式化方法被用于这一领域,取得了大量成果,突出的成果有:Lowe使用进程代数CSP发现了Needham-Schroeder公钥协议的十七年未发现的漏洞;Schneider用进程代数CSP归范了大量的安全性质;基于进程代数CSP ,Lowe和Roscoe分别发展了不同的理论和方法把大系统中协议安全性质的研究约化为小系统中协议安全性质的研究;Abadi及 Gordon发展推演密码协议的Spi演算,J.Mitchell等把Spi演算与他们发展的工具Mur结合,有可能把MIT群体的基于算法复杂性的协议安全理论与进程代数有机结合;Meadows及Syverson发展协议分析仪的工作是重要的;Bolignano使用Coq来分析大协议取得实效。总之,第二种思路至今仍是热点。第三种思路是推广或完善协议模型,根据该模型提出有效的分析理论。在这方面Thayer、Herzon及Guttman提出的Strand Space理论是一个相当简洁、优美的理论,它把以往使用过的许多思想及技术合理融为一体。Paulson的归纳方法也是有力的,而Schneider基于CSP的理论分析体系已引发许多工作。正如Meadows所说:这一领域已出现了统一的信号,标明了该领域正走向成熟。但该领域还有许多工作需要完成,主要包括:如何把分析小系统协议的思想与方法扩充到大系统协议;如何扩充现已较成熟的理论或方法去研究更多的安全性质,使同一系统中安全性质在统一的框架下进行验证,而不是同一系统中不同安全性质采用不同系统进行验证,只有这样才能保证不会顾此失彼。 目前,已经提出了大量的实用安全协议,有代表的有:电子商务协议,IPSec协议,TLS协议,简单网络管理协议(SNMP),PGP协议,PEM协议,S-HTTP协议,S/MIME协议等。实用安全协议的安全性分析特别是电子商务协议,IPSec协议,TLS协议是当前协议研究中的另一个热点。 典型的电子商务协议有SET协议,iKP协议等。另外,值得注意的是Kailar逻辑,它是目前分析电子商务协议的最有效的一种形式化方法。 为了实现安全IP,Internet工程任务组IETF于1994年开始了一项IP安全工程,专门成立了IP安全协议工作组IPSEC,来制定和推动一套称为IPSec的IP安全协议标准。其目标就是把安全集成到IP层,以便对Internet的安全业务提供底层的支持。IETF于1995年8月公布了一系列关于IPSec的建议标准。IPSec适用于IPv4和下一代IP协议IPv6,并且是IPv6自身必备的安全机制。但由于IPSec还比较新,正处于研究发展和完善阶段。 1994年,Netscape公司为了保护Web通信协议HTTP,开发了SSL协议,该协议的第一个成熟的版本是SSL2.0,被集成到Netscape公司的Internet产品中,包括Navigator浏览器和Web服务器产品等。SSL2.0协议的出现,基本上解决了Web通信协议的安全问题,很快引起了人们的关注。Microsoft公司对该协议进行了一些修改,发布了PCT协议,并应用在Internet Explorer等产品中。1996年,Netscape公司发布了SSL3.0,该版本增加了一些功能和安全特性,并修改了一些安全缺陷。1997年,IETF基于SSL3.0协议发布了TLS1.0传输层安全协议的草案,Microsoft公司丢弃了PCT,和Netscape公司一起宣布支持该开放的标准。1999年,正式发布了RFC2246。 在安全协议的研究中,除理论研究外,实用安全协议研究的总趋势是走向标准化。我国学者虽然在理论研究方面和国际上已有协议的分析方面做了一些工作,但在实际应用方面与国际先进水平还有一定的差距,当然,这主要是由于我国的信息化进程落后于先进国家的原因。3国内外安全体系结构理论与技术研究现状及发展趋势 安全体系结构理论与技术主要包括:安全体系模型的建立及其形式化描述与分析,安全策略和机制的研究,检验和评估系统安全性的科学方法和准则的建立,符合这些模型、策略和准则的系统的研制(比如安全操作系统,安全数据库系统等)。 80年代中期,美国国防部为适应军事计算机的保密需要,在70年代的基础理论研究成果计算机保密模型(BellLa padula模型)的基础上,制订了可信计算机系统安全评价准则(TCSEC),其后又对网络系统、数据库等方面作出了系列安全解释,形成了安全信息系统体系结构的最早原则。至今美国已研制出达到TCSEC要求的安全系统(包括安全操作系统、安全数据库、安全网络部件)多达100多种,但这些系统仍有局限性,还没有真正达到形式化描述和证明的最高级安全系统。90年代初,英、法、德、荷四国针对TCSEC准则只考虑保密性的局限,联合提出了包括保密性、完整性、可用性概念的信息技术安全评价准则( ITSEC ),但是该准则中并没有给出综合解决以上问题的理论模型和方案。近年来六国七方(美国国家安全局和国家技术标准研究所、加、英、法、德、荷)共同提出?quot;信息技术安全评价通用准则(CC for ITSEC)。CC综合了国际上已有的评测准则和技术标准的精华,给出了框架和原则要求,但它仍然缺少综合解决信息的多种安全属性的理论模型依据。CC标准于1999年7月通过国际标准化组织认可,确立为国际标准,编号为ISO/IEC 15408。ISO/IEC 15408标准对安全的内容和级别给予了更完整的规范,为用户对安全需求的选取提供了充分的灵活性。然而,国外研制的高安全级别的产品对我国是封锁禁售的,即使出售给我们,其安全性也难以令人放心,我们只能自主研究和开发。 我国在系统安全的研究与应用方面与先进国家和地区存在很大差距。近几年来,在我国进行了安全操作系统、安全数据库、多级安全机制的研究,但由于自主安全内核受控于人,难以保证没有漏洞。而且大部分有关的工作都以美国1985年的TCSEC标准为主要参照系。开发的防火墙、安全路由器、安全网关、黑客入侵检测系统等产品和技术,主要集中在系统应用环境的较高层次上,在完善性、规范性、实用性上还存在许多不足,特别是在多平台的兼容性、多协议的适应性、多接口的满足性方面存在很大距离,其理论基础和自主的技术手段也有待于发展和强化。然而,我国的系统安全的研究与应用毕竟已经起步,具备了一定的基础和条件。1999年10月发布了计算机信息系统安全保护等级划分准则,该准则为安全产品的研制提供了技术支持,也为安全系统的建设和管理提供了技术指导。 Linux开放源代码为我们自主研制安全操作系统提供了前所未有的机遇。作为信息系统赖以支持的基础系统软件-操作系统,其安全性是个关键。长期以来,我国广泛使用的主流操作系统都是从国外引进的。从国外引进的操作系统,其安全性难以令人放心。具有我国自主版权的安全操作系统产品在我国各行各业都迫切需要。我国的政府、国防、金融等机构对操作系统的安全都有各自的要求,都迫切需要找到一个既满足功能、性能要求,又具备足够的安全可信度的操作系统。Linux的发展及其应用在国际上的广泛兴起,在我国也产生了广泛的影响,只要其安全问题得到妥善解决,将会得到我国各行各业的普遍接受。国内外信息安全研究现状及发展趋势(三)4国内外信息对抗理论与技术研究现状及发展趋势 信息对抗理论与技术主要包括:黑客防范体系,信息伪装理论与技术,信息分析与监控,入侵检测原理与技术,反击方法,应急响应系统,计算机病毒,人工免疫系统在反病毒和抗入侵系统中的应用等。 由于在广泛应用的国际互联网上,黑客入侵事件不断发生,不良信息大量传播,网络安全监控管理理论和机制的研究受到重视。黑客入侵手段的研究分析,系统脆弱性检测技术,入侵报警技术,信息内容分级标识机制,智能化信息内容分析等研究成果已经成为众多安全工具软件的组成部分。大量的安全事件和研究成果揭示出系统中存在许多设计缺陷,存在情报机构有意埋伏的安全陷阱的可能。例如在CPU芯片中,在发达国家现有技术条件下,可以植入无线发射接收功能;在操作系统、数据库管理系统或应用程序中能够预先安置从事情报收集、受控激发破坏程序。通过这些功能,可以接收特殊病毒、接收来自网络或空间的指令来触发CPU的自杀功能、搜集和发送敏感信息;通过特殊指令在加密操作中将部分明文隐藏在网络协议层中传输等。而且,通过唯一识别CPU个体的序列号,可以主动、准确地识别、跟踪或攻击一个使用该芯片的计算机系统,根据预先设定收集敏感信息或进行定向破坏。 1988年著名的Internet蠕虫事件和计算机系统Y2k问题足以让人们高度重视信息系统的安全。最近黑客利用分布式拒绝服务方法攻击大型网站,导致网络服务瘫痪,更是令人震惊。由于信息系统安全的独特性,人们已将其用于军事对抗领域。计算机病毒和网络黑客攻击技术必将成为新一代的军事武器。信息对抗技术的发展将会改变以往的竞争形式,包括战争。Shane D.Deichmen在他的论文信息战中写道:信息战环境中的关键部分是参与者不需要拥有超级能力。任何势力(甚至不必考虑国家状态)拥有适当技术就可以破坏脆弱的C2级网络并拒绝关键信息服务。相对Mahanian的信息控制战略而言(该战略试图控制信息领域的每个部分),美国军方更现实的战略方法是采用信息拒绝中的一种(特别是对真实信息访问的拒绝)。RAND的专家较零散。但它的确是一个研究热点。目前看到的成果主要是一些产品(比如IDS、防范软件、杀病毒软件等),攻击程序和黑客攻击成功的事件。当前在该领域最引人瞩目的问题是网络攻击,美国在网络攻击方面处于国际领先地位,有多个官方和民间组织在做攻击方法的研究。其中联邦调查局的下属组织NIPC维护了一个黑客攻击方法的数据库,列入国家机密,不对外提供服务。该组织每两周公布一次最新的黑客活动报道及其攻击手段与源码。美国最著名的研究黑客攻击方法的组织有:CIAC(计算机事故咨询功能组),CERT(计算机紧急响应小组)和COAST(计算机操作、审计认为信息战没有前线,潜在的战场是一切联网系统可以访问的地方,比如,油气管线、电力网、电话交换网。总体来说,美国本土不再是能提供逃避外部攻击的避难所。 该领域正在发展阶段,理论和技术都很不成熟,也比和安全技术组)。他们跟踪研究最新的网络攻击手段,对外及时发布信息,并提供安全咨询。此外,国际上每年举行一次FIRST(安全性事故与响应小组论坛)会议,探讨黑客攻击方法的最新进展。 该领域的另一个比较热门的问题是入侵检测与防范。这方面的研究相对比较成熟,也形成了系列产品,典型代表是IDS产品。国内在这方面也做了很好的工作,并形成了相应的产品。 信息对抗使得信息安全技术有了更大的用场,极大地刺激了信息安全的研究与发展。信息对抗的能力不仅体现了一个国家的综合实力,而且体现了一个国家信息安全实际应用的水平。为此,通过调研国际上在该领域的发展现状和趋势,结合我们自己的理解和观点,对信息对抗的定义、研究内容、研究目标等方面进行了详细描述和总结。详细介绍参见论文网络环境下的信息对抗理论与技术(作者:冯登国、蒋建春,发表在世界科技研究与发展上,2000年4月,第22卷,第2期,27-30页)。5国内外网络安全与安全产品研究现状及发展趋势 网络安全是信息安全中的重要研究内容之一,也是当前信息安全领域中的研究热点。研究内容包括:网络安全整体解决方案的设计与分析,网络安全产品的研发等。网络安全包括物理安全和逻辑安全。物理安全指网络系统中各通信、计算机设备及相关设施的物理保护,免于破坏、丢失等。逻辑安全包含信息完整性、保密性、非否认性和可用性。它是一个涉及网络、操作系统、数据库、应用系统、人员管理等方方面面的事情,必须综合考虑。 网络中的安全威胁主要有:1)身份窃取,指用户身份在通信时被非法截取;2)假冒,指非法用户假冒合法用户身份获取敏感信息的行为;3)数据窃取,指非法用户截获通信网络的数据;4)否认,指通信方事后否认曾经参与某次活动的行为;5)非授权访问;6)拒绝服务,指合法用户的正当申请被拒绝、延迟、更改等;7)错误路由。解决网络信息安全问题的主要途径是利用密码技术和网络访问控制技术。密码技术用于隐蔽传输信息、认证用户身份等。网络访问控制技术用于对系统进行安全保护,抵抗各种外来攻击。 目前,在市场上比较流行,而又能够代表未来发展方向的安全产品大致有以下几类:1) 防火墙:防火墙在某种意义上可以说是一种访问控制产品。它在内部网络与不安全的外部网络之间设置障碍,阻止外界对内部资源的非法访问,防止内部对外部的不安全访问。主要技术有:包过滤技术,应用网关技术,代理服务技术。防火墙能够较为有效地防止黑客利用不安全的服务对内部网络的攻击,并且能够实现数据流的监控、过滤、记录和报告功能,较好地隔断内部网络与外部网络的连接。但它其本身可能存在安全问题,也可能会是一个潜在的瓶颈。2) 安全路由器:由于WAN连接需要专用的路由器设备,因而可通过路由器来控制网络传输。通常采用访问控制列表技术来控制网络信息流。3) 虚拟专用网(VPN):虚拟专用网(VPN)是在公共数据网络上,通过采用数据加密技术和访问控制技术,实现两个或多个可信内部网之间的互联。VPN的构筑通常都要求采用具有加密功能的路由器或防火墙,以实现数据在公共信道上的可信传递。4) 安全服务器:安全服务器主要针对一个局域网内部信息存储、传输的安全保密问题,其实现功能包括对局域网资源的管理和控制,对局域网内用户的管理,以及局域网中所有安全相关事件的审计和跟踪。5) 电子签证机构-CA和PKI产品:电子签证机构(CA)作为通信的第三方,为各种服务提供可信任的认证服务。CA可向用户发行电子签证证书,为用户提供成员身份验证和密钥管理等功能。PKI产品可以提供更多的功能和更好的服务,将成为所有应用的计算基础结构的核心部件。6) 用户认证产品:由于IC卡技术的日益成熟和完善,IC卡被更为广泛地用于用户认证产品中,用来存储用户的个人私钥,并与其他技术如动态口令相结合,对用户身份进行有效的识别。同时,还可利用IC卡上的个人私钥与数字签名技术结合,实现数字签名机制。随着模式识别技术的发展,诸如指纹、视网膜、脸部特征等高级的身份识别技术也将投入应用,并与数字签名等现有技术结合,必将使得对于用户身份的认证和识别更趋完善。7) 安全管理中心:由于网上的安全产品较多,且分布在不同的位置,这就需要建立一套集中管理的机制和设备,即安全管理中心。它用来给各网络安全设备分发密钥,监控网络安全设备的运行状态,负责收集网络安全设备的审计信息等。8) 入侵检测系统(IDS):入侵检测,作为传统保护机制(比如访问控制,身份识别等)的有效补充,形成了信息系统中不可或缺的反馈链。9) 安全数据库:由于大量的信息存储在计算机数据库内,有些信息是有价值的,也是敏感的,需要保护。安全数据库可以确保数据库的完整性、可靠性、有效性、机密性、可审计性及存取控制与用户身份识别等。10) 安全操作系统:给系统中的关键服务器提供安全运行平台,构成安全WWW服务,安全FTP服务,安全SMTP服务等,并作为各类网络安全产品的坚实底座,确保这些安全产品的自身安全。 在上述所有主要的发展方向和产品种类上,都包含了密码技术的应用,并且是非常基础性的应用。很多的安全功能和机制的实现都是建立在密码技术的基础之上,甚至可以说没有密码技术就没有安全可言。但是,我们也应该看到密码技术与通信技术、计算机技术以及芯片技术的融合正日益紧密,其产品的分界线越来越模糊,彼此也越来越不能分割。在一个计算机系统中,很难简单地划分某个设备是密码设备,某个设备是通信设备。而这种融合的最终目的还是在于为用户提供高可信任的、安全的计算机和网络信息系统。 网络安全的解决是一个综合性问题,涉及到诸多因素,包括技术、产品和管理等。目前国际上已有众多的网络安全解决方案和产品,但由于出口政策和自主性等问题,不能直接用于解决我国自己的网络安全,因此我国的网络安全只能借鉴这些先进技术和产品,自行解决。可幸的是,目前国内已有一些网络安全解决方案和产品,不过,这些解决方案和产品与国外同类产品相比尚有一定的差距。数字签名技术研究 棋虫博客数字签名技术的核心是加密和解密,把明文变换成密文的过程叫加密;把密文变换成明文的过程叫解密,明文和密文之间的变换应该是唯一的;对称密码学的加解密:加密需要三个东西,第一:明文,指需要加密的信息;第二:加密算法;第三:密钥,加密时:加密算法根据密钥将明文加密生成密文,相同的加密算法利用不同的密钥生成的密文是不一样的。同样的,解密时,也需要用于解密的密钥,尽管算法一样但用不同的加密密钥生成密文需要不同的解密密钥来将密文重新变回明文。由此可见,有一个加密密钥就有一个解密密钥相对应,加密密钥和解密密钥是不同的;加密算法保证了即使你知道加密密钥,知道明文,并且知道加密后的密文,也是无法推出解密密钥;通常情况下,加密密钥是公开的,所以经常叫做公钥,解密密钥不公开,常叫做私钥。举一个电子邮件加解密的过程来说明公钥和私钥,比如你拥有一组相对应的公钥和私钥你先将你的公钥通过某种方式公开,我要给你发邮件时,先取得你的公钥,并利用这个公钥将邮件信息加密,然后将邮件发给你。这封加密后的邮件只有你的那一个密钥才能解密。如果邮件在传送途中被黑客截走,由于黑客没有解密密钥,也是无法看到邮件加密前的信息。前面已经提到,根据公钥是推算不出密钥的,公钥和密钥是不对称的。公钥和密钥的不对称,并且无法相互推算是由加密算法决定的。公钥和私钥反过来也是能用的,就是用私钥加密,公钥解密也是可以的。这样,就可以利用私钥签名,而其他人就可以利用公钥来检验发送该信息的人的身份,如果用公钥无法解密,说明发该信息的人不拥有与公钥相对应的私钥。密码的算法据说是利用了歌德巴赫猜想,将一个大数分解成两个质数的乘机(),还好网上有很多现成的算法,并且都提供了相关的SDK,比如DES等,网上很多地方都有用于C+的DES.h下载,在微软的Windows SDK里算法已经被集成进了CryptoAPI,可以在MFC等程序中都可以调用。公钥和密钥在编程中就是一个字符串。证书每对密钥由一个公钥和一个私钥组成,私钥由拥有者自己保存,而公钥则需要公开出来,公钥本身并没标记,仅从公钥本身不能判别谁拥有与这个公钥相对应的私钥,在很小的范围内,比如只有两人,他们之间相互信任,交换公钥,用于相互之间验证身份,没有什么问题。这个集体再稍大一点,彼此信任,也不成问题,但从法律角度讲这种信任也是有问题的。想个简单的情况:比如某人用自己的私钥对一个信息进行签名,过了一段时间之后有人发现这段信息有某种纠纷了,需要追查,那么如果拥有私钥的签名者不承认自己拥有这个私钥,那也没什么办法了签名就变得毫无意义。证书将公钥和公钥的主人名字(也就是谁拥有与这个公钥相对应的私钥)联系在一起,再请一个大家都信得过有信誉的公正、权威机构确认,就形成了证书。大体上证书包含这么三个东西:公钥、主人的名字等信息、权威机构的确认信息。由于证书上有权威机构的确认信息(当然也是加密的,下文再描述怎么确认),所以可以认为证书上的内容是可信任的;又由于证书的内容里有主人的各种信息,所以就可以确认这份证书里的公钥是谁的(也就是谁拥有与这个公钥相对应的私钥)。(证书目前最常用的是X509格式的证书)前面说的那个权威机构就是我们经常在网上看到的这个名词:(英文全称:Certificate Authority)。这个CA也有他自己的公钥和私钥。Windows 环境下,我们的电脑存储有我们所信任的CA的证书(里边有该CA的公钥),启动Internet Explorer工具InterNet 选项内容证书,可以看到你的电脑所信任的权威机构的证书。权威机构可以利用自己的私钥对另一份证书进行签名,也就是前面所说的证书中的权威机构的确认信息,一旦权威机构对一份证书签了名,就表示他确认这本证书是属于某人的。被签了名的证书还能继续对其他证书进行签名,这样一层层签下去,就形成了一个证书链。每个证书链有一个开始,那就是根证书,根证书是利用与自己本身公钥相对应的私钥进行签名的,所以又叫自签名证书。微软为我们的windows 默认装了几十个根证书,以及十几个这些根证书签过名的第二级证书。以后我们要作“正宗”证书的话就要要求这些根证书的拥有者用他们的私钥给我们的证书签一下名(当然要钱的)。如果是企业内部的应用,我们也可以自己做一个自签名证书,项目实施的时候给用户的电脑装上。生成自签名证书有很多方法:1 利用SDK,自己编程生成,网上有很多这方面的SDK,最著名的如OpenSSL2 利用openssl提供的命令行工具生成3 Windows2000的证书服务也可以自己生成自签名证书(自签名证书就是根证书).有了根证书的私钥就可以对其他证书进行签名,注:私钥不仅可以用来对信息,程序,代码甚至是证书等等各种信息进行签名。Windows SDK的 CryptoAPI 中包含了对证书进行编程的函数,在.net里提供了一个X509的托管类,可以方便的进行证书方面的编程,OpenSSL不仅可以进行Windows下的证书编程,也可以进行Unix下的编程,但网上几乎很能找到OpenSSL的说明资料,中文的根本没有,入门比较难。CryptoAPI和.Net的X509Certificate类在MSDN里有详细的说明,同时在MSDN里还能看到X509Certificate的十几个派生类,对于编程者来说,开发功能能够简单许多。常见使用举例:https 的网站访问方法,网站服务器将公钥发给浏览者,浏览者发给web服务器的信息都经过公钥加密,然后web服务器端利用私钥将信息进行解密,黑客即使获得了公钥和加密后的信息,也无法获得加密前的信息32数字签名 数字签名(也称数字签字、电子签名)在信息安全方面有重要应用,是实现认证的重要工具,在电子商务系统中是不可缺少的。321 数字签名的基本概念 在电子商务中,为了保证电子商务安全中的认证性和不可否认性,必须具有数字签名技术。数字签名是利用数字技术实现在网络传送文件时,附加个人标记,完成传统上手书签名盖章的作用,以表示确认、负责、经手等。 数字签名与消息的真实性认证是不同的。消息认证是使接收方能验证消息发送者及所发信息内容是否被篡改过。当收发者之间没有利害冲突时,这对于防止第三者的破坏来说是足够了。但当接收者和发送者之间相互有利害冲突时,单纯用消息认证技术就无法解决他们之间的纠纷,此时需借助数字签名技术。322 数字签名的必要性 商业中的契约、合同文件、公司指令和条约,以及商务书信等,传统采用手书签名或印章,以便在法律上能认证、核准、生效。 传统手书签名仪式要专门预定日期时间,契约各方到指定地点共同签署一个合同文件,短时间的签名工作量需要很长时间的前期准备工作。由于某个人不在要签署文件的当地,于是要等待、再等待。这种状况对于管理者,是延误时机:对于合作伙伴,是丢失商机:对于政府机关,是办事效率低下。 电子商务的发展大大地加快了商务的流程,已经不能容忍这种“慢条斯理”的传统手书签名方式。在电子商务时代,为了使商、贸、政府机构和直接消费者各方交流商务信息更快、更准确和更便于自动化处理,各种凭证、文件、契约、合同、指令、条约、书信、订单、企业内部(分散在各地)的管理等必须实现网络化的传递。保障传递文件的机密性应使用加密技术,保障其完整性则用信息摘要技术,而保障认证性和不可否认性则应使用数字签名技术。 数字签名可做到高效而快速的响应,任一时刻,在地球任何地方只要有Internet,就可完成签署工作。 数字签名除了可用于电子商务中的签署外,还可用于电子办公、电子转账及电子邮递等系统。323 数字签名的原理 签名是针对某一文件的,数字签名也必须针对某一电子文件,加上签名者个人的数字标记形成“数字签名”电子文件,这个电子文件从网上发送出去,接收方要能识别签名,具有认证性:从法律角度,具有不可否认性:发送方确实签署了,而接收方确实收到了。 数字签名用一般的加密方法是无法完成的。它的基本原理是:发送者A用自己的私钥KSA对消息M加密后,得密文c,B收到密文c后,用A的公钥KPA解密后,得消息M。如果可得消息M,且M和M一致,即KSA和KPA是一对密钥,M是经KSA加密的说明M是经过A“签字”的,因为只有A有这个私钥KSA。而对于消息M,B可同时通过其他途径直接从A处得到。 上述的基本原理是严格的,但不“实用”,因为用双钥密码体制加密消息M是非常慢的。与单钥密码体制加密消息的速度相比,双钥的要慢1 000倍以上。即使以后计算机的速度大幅度地提高,情况依然如此。因为为了防止破密,加密的复杂性和位数也会提高的。因此,在实际应用中,不是直接加密消息M,而是加密消息M的消息摘要H(M);消息摘要是很短的,用双钥密码体制加密它是很快的。消息用散列函数处理得到消息摘要,再用双钥密码体制的私钥加密就得到数字签名。这是实际使用的实现数字签名处理的方法。 归纳一下,数字签名实际使用原理是:消息M用散列函数H得到消息摘要h1=H(M),然后发送方A用自己的双钥密码体制的私钥KSA对这个散列值进行加密:EKSA(h1),来形成发送方A的数字签名。然后,这个数字签名将作为消息M的附件和消息M一起发送给消息接收方B。消息的接收方B首先把接收到的原始消息分成M和EKSA(h1)。从M中计算出散列值h2= H(M),接着再用发送方的双钥密码体制的公钥KPA来对消息的数字签名进行解密DKPA(EKSA(h1))得h1。如果散列值h1=h2,那么接收方就能确认该数字签名是发送方A的,而且还可以确定此消息没有被修改过。324 数字签名的要求 类似于手书签名,数字签名也应满足以下要求; (1)接收方B能够确认或证实发送方A的签名,但不能由B或第三方C伪造; (2)发送方A发出签名的消息给接收方B后,A就不能再否认自己所签发的消息; (3)接收方B对已收到的签名消息不能否认,即有收报认证; (4)第三者C可以确认收发双方之间的消息传送,但不能伪造这一过程。 数字签名与手书签名的区别在于:手写签名(包括盖章)是模拟的,因人而异,即使同一个人也有细微差别,比较容易伪造,要区别是否是伪造,往往需要特殊专家。而数字签名是0和1的数字串,极难伪造,要区别是否为伪造,不需专家。对不同的信息摘要,即使是同一人,其数字签名也是不同的。这样就实现了文件与签署的最紧密的“捆绑”。 数字签名分确定性数字签名和随机化式数字签名。确定性数字签名,其明文与密文一一时应,它对一特定消息的签名不变化,如RSA,Rabin等签名;另一类是随机式(概率式)数字签名,根据签名算法中的随机参数值,对同一消息的签名也有对应的变化。这样,一个明文可能有多个合法数字签名,如ELGamal等签名。325 数字签名的作用 数字签名可以证明: (1)如果他人可以用公钥正确地解开数字签名,则表示数字签名的确是由签名者产生的。 (2)如果消息M是用散列函数H得到的消息摘要H(M),和消息的接收方从接收到的消息M计算出散列值H(M),这两种信息摘要相同表示文件具有完整性。 数字签名机制提供了一种数字鉴别方法,普遍用于银行、电子商务、电子办公等。 数字签名可以解决下述安全鉴别问题: (1)接收方伪造:接收方伪造一份文件,并声称这是发送方发送的; (2)发送者或接收者否认:发送者或接收者事后不承认自己曾经发送或接收过文件: (3)第三方冒充:网上的第三方用户冒充发送或接收文件; (4)接收方篡改:接收方对收到的文件进行改动。 posted on 2006-01-20 18:24 LabVIEW开发者 阅读(209) 评论(1) 编辑 收藏 网摘 数字签名技术数字签名技术即进行身份认证的技术。在数字化文档上的数字签名类似于纸张上的手写签名,是不可伪造的。接收者能够验证文档确实来自签名者,并且签名后文档没有被修改过,从而保证信息的真实性和完整性。在指挥自动化系统中,数字签名技术可用于安全地传送作战指挥命令和文件。完善的签名应满足以下三个条件:1.签名者事后不能抵赖自己的签名;2.任何其它人不能伪造签名;3.如果当事人双方关于签名的真伪发生争执,能够在公正的仲裁者面前通过验证签名来确认其真伪。 数字签名技术 Internet的迅猛发展使电子商务成为商务活动的新模式。电子商务包括管理信息系统MIS、电子数据交换EDI、电子订货系统EOS、商业增值网VAN等,其中EDI成为电子商务的核心部分,涉及到多个环节的复杂的人机工程。网络的开放性与共享性也导致了网络的安全性受到严重影响,在开放的Internet平台上,社会生活中传统的犯罪和不道德行为将变得更加隐蔽和难以控制。人们从面对面的交易和作业,变成网上互不见面的操作、没有国界、没有时间限制,就产生了更大的安全隐患。因此,在电子商务的发展热潮中,电子商务的安全性已成为制约电子商务发展的重要瓶颈。 如何保证网上传输的数据的安全和交易对方的身份确认是电子商务是否得到推广的关键,可以说电子商务最关键的问题是安全性问题;而数字签名(Digital Signatures)技术是保证信息传输的保密性、数据交换的完整性、发送信息的不可否认性、交易者身份的确定性的一种有效的解决方案,是电子商务安全性的重要部分。 一 、电子商务中数据传输的几个安全性需求 1. 数据的保密性:用于防止非法用户进入系统及合法用户对系统资源的非法使用;通过对一些敏感的数据文件进行加密来保护系统之间的数据交换,防止除接收方之外的第三方截获数据及即使获取文件也无法得到其内容。如在电子交易中,避免遭到黑客的袭击使信用卡信息丢失的问题。 2. 数据的完整性:防止非法用户对进行交换的数据进行无意或恶意的修改、插入,防止交换的数据丢失等。 3. 数据的不可否认性:对数据和信息的来源进行验证,以确保数据由合法的用户发出;防止数据发送方在发出数据后又加以否认;同时防止接收方在收到数据后又否认曾收到过此数据及篡改数据。 上述需求对应于防火墙、加密、数字签名、身份认证等技术,但其关键在于数字签名技术。 二、 数字签名的含义和功能 数字签名是通过一个单向函数对要传送的报文进行处理得到的用以认证报文来源并核实报文是否发生变化的一个字母数字串。 在传统的商业系统中,通常都利用书面文件的亲笔签名或印章来规定契约性的责任,在电子商务中,传送的文件是通过电子签名证明当事人身份与数据真实性的.数据加密是保护数据的最基本方法,但也只能防止第三者获得真实数据。电子签名则可以解决否认、伪造、篡改及冒充等问题,具体要求:发送者事后不能否认发送的报文签名、接收者能够核实发送者发送的报文签名、接收者不能伪造发送者的报文签名、接收者不能对发送者的报文进行部分篡改、网络中的某一用户不能冒充另一用户作为发送者或接收者。 三、数字签名的实现方法 实现数字签名有很多方法,目前数字签名采用较多的是公钥加密技术,如基于RSA Date Security 公司的PKCS( Public Key Cryptography Standards )、Digital Signature Algorithm、x.509、PGP(Pretty Good Privacy). 1994年美国标准与技术协会公布了数字签名标准(DSS)而使公钥加密技术广泛应用。&127;公钥加密系统采用的是非对称加密算法。 (一)用非对称加密算法进行数字签名 1、算法的含义 此算法使用两个密钥:公开密钥(public key)和私有密钥(private key),&127;分别用于对数据的加密和解密,即如果用公开密钥对数据进行加密,只有用对应的私有密钥才能进行解密;如果用私有密钥对数据进行加密,则只有用对应的公开密钥才能解密。 2 签名和验证过程 (1)发送方首先用公开的单向函数对报文进行一次变换,得到数字签名,然后利用私有密钥对数字签名进行加密后附在报文之后一同发出。 (2)接收方用发送方的公开密钥对数字签名进行解密变换,得到一个数字签名的明文。发送方的公钥是由一个可信赖的技术管理机构即验证机构(CA: Certification Authority)发布的。 (3)接收方将得到的明文通过单向函数进行计算,同样得到一个数字签名,再将两个数字签名进行对比,如果相同,则证明签名有效,否则无效。 这种方法使任何拥有发送方公开密钥的人都可以验证数字签名的正确性。由于发送方私有密钥的保密性,使得接收方既可以根据验证结果来拒收该报文,也能使其无法伪造报文签名及对报文进行修改,原因是数字签名是对整个报文进行的,是一组代表报文特征的定长代码,同一个人对不同的报文将产生不同的数字签名。这就解决了银行
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!