中考数学试卷分类汇编 四边形综合

上传人:痛*** 文档编号:61906880 上传时间:2022-03-13 格式:DOC 页数:16 大小:646.51KB
返回 下载 相关 举报
中考数学试卷分类汇编 四边形综合_第1页
第1页 / 共16页
中考数学试卷分类汇编 四边形综合_第2页
第2页 / 共16页
中考数学试卷分类汇编 四边形综合_第3页
第3页 / 共16页
点击查看更多>>
资源描述
四边形综合1、(2013湘西州)下列说法中,正确的是()A同位角相等B对角线相等的四边形是平行四边形C四条边相等的四边形是菱形D矩形的对角线一定互相垂直考点:菱形的判定;同位角、内错角、同旁内角;平行四边形的判定;矩形的性质分析:根据平行线的性质判断A即可;根据平行四边形的判定判断B即可;根据菱形的判定判断C即可;根据矩形的性质判断D即可解答:解:A、如果两直线平行,同位角才相等,故本选项错误;B、对角线互相平分的四边形是平行四边形,故本选项错误;C、四边相等的四边形是菱形,故本选项正确;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选C点评:本题考查了平行线的性质,平行四边形、菱形的判定、矩形的性质的应用,主要考查学生的理解能力和辨析能力2、(2013陕西)如图,四边形ABCD的对角线AC、BD相交于点O,且BD平分AC,若BD=8,AC=6,BOC=120,则四边形ABCD的面积为 .(结果保留根号)ABDCOHG第14题图文并茂考点:三角形面积的求法及特殊角的应用。解析:BD平分AC,所以OA=OC=3,因为BOC=120,所以DOC=A0B=60,过C作CHBD于H,过A作AGBD于G,在CHO中,C0H=60,OC=3,所以CH=,同理:AG=,所以四边形ABCD的面积=。3、(2013河南省)如图,在等边三角形中,,射线,点从点出发沿射线以的速度运动,同时点从点出发沿射线以的速度运动,设运动时间为(1)连接,当经过边的中点时,求证: 证明: 是边的中点 又 (2)填空: 当为 s时,四边形是菱形; 当为 s时,以为顶点的四边形是直角梯形。【解析】当四边形是菱形时, 由题意可知:, 若四边形是直角梯形,此时 过作于M,可以得到, 即, 此时,重合,不符合题意,舍去。 若四边形若四边形是直角梯形,此时, ABC是等边三角形,F是BC中点, ,得到 经检验,符合题意。【答案】 4、(2013 德州)(1)如图1,已知ABC,以AB、AC为边向ABC外作等边ABD和等边ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得ABC=45,CAE=90,AB=BC=100米,AC=AE,求BE的长考点:四边形综合题专题:计算题分析:(1)分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形ABD与三角形ACE全等,利用全等三角形的对应边相等即可得证;(2)BE=CD,理由与(1)同理;(3)根据(1)、(2)的经验,过A作等腰直角三角形ABD,连接CD,由AB=AD=100,利用勾股定理求出BD的长,由题意得到三角形DBC为直角三角形,利用勾股定理求出CD的长,即为BE的长解答:解:(1)完成图形,如图所示:证明:ABD和ACE都是等边三角形,AD=AB,AC=AE,BAD=CAE=60,BAD+BAC=CAE+BAC,即CAD=EAB,在CAD和EAB中,CADEAB(SAS),BE=CD;(2)BE=CD,理由同(1),四边形ABFD和ACGE均为正方形,AD=AB,AC=AE,BAD=CAE=90,CAD=EAB,在CAD和EAB中,CADEAB(SAS),BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,BAD=90,则AD=AB=100米,ABD=45,BD=100米,连接CD,则由(2)可得BE=CD,ABC=45,DBC=90,在RtDBC中,BC=100米,BD=100米,根据勾股定理得:CD=100米,则BE=CD=100米点评:此题考查了四边形综合题,涉及的知识有:全等三角形的判定与性质,等边三角形,等腰直角三角形,以及正方形的性质,勾股定理,熟练掌握全等三角形的判定与性质是解本题的关键5、(2013绍兴)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD中,BC=2AB,则称ABCD为方形(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可)(2)在ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?若以B3C3为一边的矩形为方形,求BC与BC边上的高之比考点:四边形综合题分析:(1)答案不唯一,根据已知举出即可;(2)求出ABCAB1C1AB2C2AB3C3AB4C4,推出=,=,=,=,求出B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,MN=GN=GH=HE=4,BQ=B2O=B3Z=B4K=4,根据已知判断即可;设AM=h,根据ABCAB3C3,得出=,求出MN=GN=GH=HE=h,分为两种情况:当B3C3=2h,时,当B3C3=h时,代入求出即可解答:解:(1)答案不唯一,如a=2,b=4;(2)以B1C1为一边的矩形不是方形理由是:过A作AMBC于M,交B1C1于E,交B2C2于H,交B3C3于G,交B4C4于N,则AMB4C4,AMB3C3,AMB2C2,AMB1C1,由矩形的性质得:BCB1C1B2C2B3C3B4C4,ABCAB1C1AB2C2AB3C3AB4C4,=,=,=,=,AM=20,BC=25,B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,MN=GN=GH=HE=4,BQ=B2O=B3Z=B4K=4,即B1C12B1Q,B1Q2B1C1,以B1C1为一边的矩形不是方形;以B3C3为一边的矩形为方形,设AM=h,ABCAB3C3,=,则AG=h,MN=GN=GH=HE=h,当B3C3=2h,时,=;当B3C3=h时,=综合上述:BC与BC边上的高之比是或点评:本题考查了相似三角形的性质和判定和矩形的性质的应用,注意:相似三角形的对应高的比等于相似比6、(2013资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MNDF于H,交AD于N(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t0);判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由连结FM、FN,MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由考点:四边形综合题分析:(1)证明ADFDNC,即可得到DF=MN;(2)首先证明AFECDE,利用比例式求出时间t=a,进而得到CM=a=CD,所以该命题为真命题;若MNF为等腰三角形,则可能有三种情形,需要分类讨论解答:(1)证明:DNC+ADF=90,DNC+DCN=90,ADF=DCN在ADF与DNC中,ADFDNC(ASA),DF=MN(2)解:该命题是真命题理由如下:当点F是边AB中点时,则AF=AB=CDABCD,AFECDE,AE=EC,则AE=AC=a,t=a则CM=1t=a=CD,点M为边CD的三等分点能理由如下:易证AFECDE,即,得AF=易证MNDDFA,即,得ND=tND=CM=t,AN=DM=at若MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知FANNDM,AF=DM,即=t,得t=0,不合题意此种情形不存在;(II)若FN=FM,由MNDF知,HN=HM,DN=DM=MC,t=a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得MFCNMD,FC=DM=at;又由NDMDCF,即,FC=at,t=a,此时点F与点C重合综上所述,当t=a或t=a时,MNF能够成为等腰三角形点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解7、(2013宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形如菱形就是和谐四边形(1)如图1,在梯形ABCD中,ADBC,BAD=120,C=75,BD平分ABC求证:BD是梯形ABCD的和谐线;(2)如图2,在1216的网格图上(每个小正方形的边长为1)有一个扇形BAC,点ABC均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,BAD=90,AC是四边形ABCD的和谐线,求BCD的度数考点:四边形综合题分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明ABD和BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在上任意一点构成的四边形ABDC就是和谐四边形;连接BC,在BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30的直角三角形性质就可以求出BCD的度数解答:解:(1)ADBC,ABC+BAD=180,ADB=DBCBAD=120,ABC=60BD平分ABC,ABD=DBC=30,ABD=ADB,ADB是等腰三角形在BCD中,C=75,DBC=30,BDC=C=75,BCD为等腰三角形,BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)AC是四边形ABCD的和谐线,ACD是等腰三角形AB=AD=BC,如图4,当AD=AC时,AB=AC=BC,ACD=ADCABC是正三角形,BAC=BCA=60BAD=90,CAD=30,ACD=ADC=75,BCD=60+75=135如图5,当AD=CD时,AB=AD=BC=CDBAD=90,四边形ABCD是正方形,BCD=90如图6,当AC=CD时,过点C作CEAD于E,过点B作BFCE于F,AC=CDCEAD,AE=AD,ACE=DCEBAD=AEF=BFE=90,四边形ABFE是矩形BF=AEAB=AD=BC,BF=BC,BCF=30AB=BC,ACB=BACABCE,BAC=ACE,ACB=ACE=BCF=15,BCD=153=45点评:本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30的直角三角形的性质的运用解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键8、(2013年武汉)已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G (1)如图,若四边形ABCD是矩形,且DECF,求证; (2)如图,若四边形ABCD是平行四边形,试探究:当B与EGC满足什么关系时,使得成立?并证明你的结论; (3)如图,若BA=BC=6,DA=DC=8,BAD90,DECF,请直接写出的值解析:(1)证明:四边形ABCD是矩形,AADC90, DECF,ADEDCF,ADEDCF,(2)当B+EGC180时,成立,证明如下: 在AD的延长线上取点M,使CMCF,则CMFCFM ABCD,ACDM, B+EGC180,AEDFCB,CMFAED ADEDCM,即(3)9、(2013杭州压轴题)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件EPF=45,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1(1)求证:APE=CFP;(2)设四边形CMPF的面积为S2,CF=x,求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;当图中两块阴影部分图形关于点P成中心对称时,求y的值考点:四边形综合题分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式首先分别用x表示出S1与S2,然后计算出y与x的函数解析式这是一个二次函数,求出其最大值;注意中心对称、轴对称的几何性质解答:(1)证明:EPF=45,APE+FPC=18045=135;而在PFC中,由于PF为正方形ABCD的对角线,则PCF=45,则CFP+FPC=18045=135,APE=CFP(2)解:APE=CFP,且FCP=PAE=45,APECPF,则而在正方形ABCD中,AC为对角线,则AC=AB=,又P为对称中心,则AP=CP=,AE=如图,过点P作PHAB于点H,PGBC于点G,P为AC中点,则PHBC,且PH=BC=2,同理PG=2SAPE=2=,阴影部分关于直线AC轴对称,APE与APN也关于直线AC对称,则S四边形AEPN=2SAPE=;而S2=2SPFC=2=2x,S1=S正方形ABCDS四边形AEPNS2=162x,y=+1E在AB上运动,F在BC上运动,且EPF=45,2x4令=a,则y=8a2+8a1,当a=,即x=2时,y取得最大值而x=2在x的取值范围内,代入x=2,则y最大=421=1y关于x的函数解析式为:y=+1(2x4),y的最大值为1图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,=x,解得x=,代入x=,得y=2点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错 16学习是一件快乐的事情,大家下载后可以自行修改
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!