浙江省中考数学考点复习 第27课 轴对称、平移和旋转课件

上传人:沈*** 文档编号:51855714 上传时间:2022-02-04 格式:PPT 页数:27 大小:12.09MB
返回 下载 相关 举报
浙江省中考数学考点复习 第27课 轴对称、平移和旋转课件_第1页
第1页 / 共27页
浙江省中考数学考点复习 第27课 轴对称、平移和旋转课件_第2页
第2页 / 共27页
浙江省中考数学考点复习 第27课 轴对称、平移和旋转课件_第3页
第3页 / 共27页
点击查看更多>>
资源描述
热门考点热门考点20152015年年20142014年年20132013年年1轴对称和轴对 称图形2平移3旋转4中心对称和中 心对称图形杭州T3,3分温州T4,3分宁波T10,4分 宁波T12,4分丽水T10,3分绍兴、义乌T23,12分嘉兴、舟山T2,4分嘉兴、舟山T22,12分近三年浙江中考试题分布杭州T22,12分绍兴T9,4分宁波T3,4分台州T10,4分 台州T12,5分 舟山T7,3分舟山T14,4分嘉兴、舟山T9,4分杭州T1,3分温州T15,5分温州T19,8分 绍兴T19,8分宁波T3,3分湖州T6,3分台州T4,4分义乌T7,3分义乌T23,10分金华、丽水T24,12分嘉兴、舟山T14,4分嘉兴、舟山T16,5分考点一轴对称和轴对称图形考点一轴对称和轴对称图形1由一个图形变为另一个图形,并使这两个图形沿某一条由一个图形变为另一个图形,并使这两个图形沿某一条直线直线折叠折叠后能够后能够互相重合互相重合,这样的图形改变叫作,这样的图形改变叫作图形的图形的轴对称轴对称,这条直线叫作,这条直线叫作对称轴对称轴 2如果把一个图形沿着一条直线如果把一个图形沿着一条直线折叠折叠后,直线两侧的部分后,直线两侧的部分能够能够互相重合互相重合,那么这个图形叫作,那么这个图形叫作轴对称图形轴对称图形,这条直,这条直线叫作线叫作对称轴对称轴 3图形的轴对称的性质:图形的轴对称的性质: (1)成轴对称的两个图形是成轴对称的两个图形是全等全等图形图形 (2)对应点所连的线段被对称轴对应点所连的线段被对称轴垂直平分垂直平分 (3)对应线段对应线段相等相等,对应角,对应角相等相等 4轴对称图形的性质:轴对称图形的性质: (1)对应点所连的线段被对称轴对应点所连的线段被对称轴垂直平分垂直平分 (2)对应线段对应线段相等相等,对应角,对应角相等相等 1图形的轴对称是指两个图形关于某条直线对称,是两个图形的轴对称是指两个图形关于某条直线对称,是两个图形特殊的位置关系;轴对称图形是指一个图形本身具图形特殊的位置关系;轴对称图形是指一个图形本身具有的特性;轴对称变换是指由一个图形得到它的轴对称有的特性;轴对称变换是指由一个图形得到它的轴对称图形的过程图形的过程 特别关注 判断一个图形是不是轴对称图形,关键是看能判断一个图形是不是轴对称图形,关键是看能否找到至少否找到至少 1 条直线,使该图形沿着这条直线对折后,直线条直线,使该图形沿着这条直线对折后,直线两侧的部分能够完全重合若找得到,则是轴对称图形;若两侧的部分能够完全重合若找得到,则是轴对称图形;若找不到,则不是找不到,则不是 2轴对称作图时,关键是画出原图形各顶点的对应点主轴对称作图时,关键是画出原图形各顶点的对应点主要步骤为:首先过各顶点向对称轴引垂线并延长,再在要步骤为:首先过各顶点向对称轴引垂线并延长,再在延长线上取对应点,使之与垂足间的线段长度等于垂足延长线上取对应点,使之与垂足间的线段长度等于垂足与各顶点间的线段长度,最后连结所得到的对应点与各顶点间的线段长度,最后连结所得到的对应点 3折叠问题的实质是轴对称问题,折痕就是对称轴折叠折叠问题的实质是轴对称问题,折痕就是对称轴折叠问题中,常借助方程来解决线段间的数量关系问题中,常借助方程来解决线段间的数量关系 4利用轴对称还可以解决在直线上找一点,使它到直线同利用轴对称还可以解决在直线上找一点,使它到直线同侧两点距离之和最小这类常见问题侧两点距离之和最小这类常见问题 【典例【典例 1】 (2015贵州六盘水贵州六盘水)如图如图 271,有一个英语单词,四,有一个英语单词,四个字母都关于直线个字母都关于直线 l 对称,请在图中补全字母,在横线上写出这对称,请在图中补全字母,在横线上写出这个单词所指的物品:个单词所指的物品:_ 图图 271 【点评】【点评】 本题主要考查轴对称图形的知识,根据轴对称的性质本题主要考查轴对称图形的知识,根据轴对称的性质作出图形是解题的关键作出图形是解题的关键 【解析】【解析】 如解图如解图 (典例典例 1 解解) 书书 考点二平移考点二平移1平移的概念:平移的概念: 一个图形整体沿着一条直线的方向一个图形整体沿着一条直线的方向平行移动一段距离平行移动一段距离叫叫作平移作平移 2平移的性质:平移的性质: (1)平移变换不改变图形的平移变换不改变图形的形状形状、大小大小和和方向方向 (2)连结对应点的线段连结对应点的线段平行平行(或在同一条直线上或在同一条直线上)而且相而且相等等 1平移作图的步骤和方法:平移作图的步骤和方法: (1)弄清题目要求,确定平移的方向和移动的距离弄清题目要求,确定平移的方向和移动的距离 (2)找出构成图形的关键点找出构成图形的关键点 (3)沿一定的方向,按一定的距离平移各个关键点沿一定的方向,按一定的距离平移各个关键点 (4)连结所作的各个关键点,并标上相应字母连结所作的各个关键点,并标上相应字母 (5)写出结论写出结论 2 图形连续经过两次轴对称 图形连续经过两次轴对称(两条对称轴相互平行两条对称轴相互平行)得到的图形可得到的图形可以看作是由原图形经过一次平移得到的以看作是由原图形经过一次平移得到的 1要描述一个平移变换,必须指出平移的方向和移动的距离要描述一个平移变换,必须指出平移的方向和移动的距离 2画平移图形的依据是平移的性质画平移图形的依据是平移的性质 【点评】【点评】 本题主要考查平移的性质,注意一个顶点平移不改变其对本题主要考查平移的性质,注意一个顶点平移不改变其对边中点的位置,三角形的角平分线分角相等,三角形的高线垂直于角边中点的位置,三角形的角平分线分角相等,三角形的高线垂直于角的对边的对边 【答案】【答案】 AD AF AE 考点三旋转考点三旋转1旋转的定义:旋转的定义: 在平面内,将一个图形绕一个在平面内,将一个图形绕一个定点定点沿某个方向转动一个角沿某个方向转动一个角度,这样的图形运动称为旋转这个定点叫作度,这样的图形运动称为旋转这个定点叫作旋转中心旋转中心 2旋转的性质:旋转的性质: (1)旋转变换不改变图形的旋转变换不改变图形的形状形状和和大小大小 (2)对应点到旋转中心的距离对应点到旋转中心的距离相等相等任何一对对应点与旋转任何一对对应点与旋转中心连线所成的角度等于中心连线所成的角度等于旋转旋转的角度的角度 (3)对应线段对应线段相等相等,对应角,对应角相等相等 旋转作图的步骤和方法:旋转作图的步骤和方法: (1)确定旋转中心、旋转方向和旋转角确定旋转中心、旋转方向和旋转角 (2)找出图形的关键点找出图形的关键点 (3)将图形的关键点和旋转中心连结起来,然后按旋转方向分别将它将图形的关键点和旋转中心连结起来,然后按旋转方向分别将它们旋转一个旋转角的度数,得到这些关键点的对应点们旋转一个旋转角的度数,得到这些关键点的对应点 (4)按原图形顺次连结这些对应点,所得到的图形就是旋转后的图按原图形顺次连结这些对应点,所得到的图形就是旋转后的图形形 特别关注 1在描述旋转时,必须指出它是按顺时针还是逆时针旋转多少度,在描述旋转时,必须指出它是按顺时针还是逆时针旋转多少度,不能只说旋转多少度不能只说旋转多少度 2旋转不改变图形的形状与大小,利用旋转证明或计算时要抓住旋转不改变图形的形状与大小,利用旋转证明或计算时要抓住旋转角相等,对应点到旋转中心距离相等这些性质旋转角相等,对应点到旋转中心距离相等这些性质 【点评】【点评】 本题主要考查旋转的性质及全等三角形的判定与性质,作辅助线本题主要考查旋转的性质及全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键构造全等三角形是解题的关键 考点四中心对称和中心对称图形考点四中心对称和中心对称图形1如果一个图形绕着某一个点旋转如果一个图形绕着某一个点旋转 180后,能够和另外一个后,能够和另外一个图形互相重合,我们就称这两个图形关于这一点成图形互相重合,我们就称这两个图形关于这一点成中心对中心对称称,这个点叫作,这个点叫作对称中心对称中心,这两个图形中的对应点叫作关,这两个图形中的对应点叫作关于对称中心的对称点于对称中心的对称点 2关于某一点中心对称的两个图形的对称点所连线段都经过关于某一点中心对称的两个图形的对称点所连线段都经过对称中心对称中心,且被,且被对称中心对称中心平分关于某一点中心对称的两平分关于某一点中心对称的两个图形是全等图形个图形是全等图形 3如果一个图形绕着一个点旋转如果一个图形绕着一个点旋转 180后,所得到的图形能够后,所得到的图形能够和原来的图形互相重合, 那么这个图形叫作和原来的图形互相重合, 那么这个图形叫作中心对称图形中心对称图形,这个点叫这个点叫对称中心对称中心 成中心对称是两个图形的特殊位置关系, 而中心对称图成中心对称是两个图形的特殊位置关系, 而中心对称图形是指一个图形本身具有的特性形是指一个图形本身具有的特性 特别关注 特别注意:等边三角形不是中心对称图形特别注意:等边三角形不是中心对称图形 【典例【典例 4】 (2015浙江杭州浙江杭州)下列图形中,属于中心对称图形的是下列图形中,属于中心对称图形的是 ( ) 【点评】【点评】 本题考查中心对称图形的识别,根据中心对称图形的概本题考查中心对称图形的识别,根据中心对称图形的概念找对称中心是解题的关键念找对称中心是解题的关键 【解析】【解析】 根据中心对称图形的概念进行判断,只有选项根据中心对称图形的概念进行判断,只有选项 A 符合,符合,选项选项 B,C,D 中的图形旋转中的图形旋转 180后不能与原图形重合,不是中心后不能与原图形重合,不是中心对称图形故选对称图形故选 A 【答案】【答案】 A 本课考点的考查以基础题和稍难题为主, 轴对称图形与本课考点的考查以基础题和稍难题为主, 轴对称图形与中心对称图形的识别一般单独考查, 其余一般都会结合图形中心对称图形的识别一般单独考查, 其余一般都会结合图形的一些性质综合考查本课的难点在于折叠问题与旋转问的一些性质综合考查本课的难点在于折叠问题与旋转问题,在压轴题中经常出现在最短路径问题和折叠问题中,题,在压轴题中经常出现在最短路径问题和折叠问题中,常用到转化思想常用到转化思想 【例【例 1】 (2015 四川资阳四川资阳)如图如图 274,透明的,透明的圆柱形容器圆柱形容器(容器厚度忽略不计容器厚度忽略不计)的高为的高为 12 cm, 底面周长为底面周长为 10 cm,在容器内壁离容器底部,在容器内壁离容器底部 3 cm 的点的点 B 处有一饭粒, 此时一只蚂蚁正好在处有一饭粒, 此时一只蚂蚁正好在容器外壁且离容器上沿容器外壁且离容器上沿 3 cm 的点的点 A 处,则蚂处,则蚂蚁吃到饭粒需爬行的最短路径是蚁吃到饭粒需爬行的最短路径是 ( ) A13 cm B2 61 cm C 61 cm D2 34 cm 【解析】【解析】 如解图如解图 透明的圆柱形容器的高为透明的圆柱形容器的高为 12 cm,底面周长为,底面周长为 10 cm,在容器内壁离容器底部,在容器内壁离容器底部 3 cm 的点的点 B 处有处有 一饭粒,此时一只蚂蚁正好在容器外壁且离容器一饭粒,此时一只蚂蚁正好在容器外壁且离容器 上沿上沿 3 cm 的点的点 A 处,处, 将容器侧面展开,作点将容器侧面展开,作点 A 关于关于 EF 的对称点的对称点 A,连结连结 AB,则,则 AB 即为最短距离即为最短距离 易知易知 AD5 cm,BD12 cm, AB AD2BD2 5212213(cm) 【答案】【答案】 A 【例【例 2】 (2015浙江丽水浙江丽水)如图如图 275,在方格纸中,线段,在方格纸中,线段 a,b,c,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有尾相接组成三角形,则能组成三角形的不同平移方法有 ( ) 图图 275 A3 种种 B6 种种 C8 种种 D12 种种 【解析】【解析】 由题图,根据勾股定理可得:由题图,根据勾股定理可得: a 2,b 5,c2 5,d 5 abc,adc,bdc,badba, 根据三角形构成条件,只有根据三角形构成条件,只有 a,b,d 三三条线段首尾相接能组成三角形条线段首尾相接能组成三角形 如解图所示,通过平移如解图所示,通过平移 a,b,d 中的两条中的两条线段,使得和第三条线段首尾相接组成三线段,使得和第三条线段首尾相接组成三 角形,能组成三角形的不同平移方法有角形,能组成三角形的不同平移方法有 6 种种 【答案】【答案】 B
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!