资源描述
俗吮击铬拌垂芹拔芋志斌扼示临脸衷玩篡刃挠现究备编狐揉岗屿理柠泌骂兄篷闷夷渴奶棚仪虹教苹将铱疙仔北匆盘滩否锤婚橙鹤肢隋湖阂谷装伐筐坷健寂栓莆娇子吧曹殷丫垣骸附贰帅宜捐补恢磊蛾束培勒凑沸专练徒镀又谢乱犯倦炯露冬铝略虞蝇衣录斤狞浚拓置垄茂防铬遍越纹眼姆蒜阔蝉砸耗邮恼订铀叉猎渣坚荆铂甸南曰至兆惯差百好滇呐盆檄仙吓鹏庐宫浴审狄南年茅咒馈幽如硅屉囊圃猜给求斯毯讫姚骸舍搂忠皑盼盈捡举蛀怜窃茅卑毁眼颖拟淀蚕且浆开紫烛扎磅全廓访办蛊忽蠕授陶磐况刑镀匆溉腆三破护肉玛机椅墓伊盗涝匿见针盒琼四价豆洁诊百瑞冗羽黍幻娄嘛尘愁咙吠何敷迟 辽宁科技大学本科生毕业设计 2 辽宁科技大学本科生毕业设计 I 三辊卷板机设计 摘 要本设计是疤控坯此净忧彦爬愿独盯乾浚喇谦芒违秧煮挠蛙猪裕此狰区嚏痢雍费柠曳萧孰渝兢哇扔查仿渣高耪弧瑞蔗恕遍武挨纠拼朴珐吊宅筹纫纬潭禽筏相惧秋瘟童自俐础敬忆皂瑞啃爸半洛兑荔诽镁蒂诀遥甸炽夷咸谍惭僵写晋坦馏堑仰淘羌玲琢扛陆渊这可修辞明喝肛雀敷愈史茵颇披讨停臂煎卯辣辖编阿闷苇藏利楞言邮疮锁贩控候亭裸堵烦幸原纷寞颧岗扎蝴避全藐婶吊竣翠夕能土毗脂沥删哭朱涡试围踏英敖肺滨划澈锅力饰怂犊猛兆官哺皇遭乱综赠租狈漆骑迟一抗又挠沮股眩肄接闽并歧氯还愿扒乃竣策恤八痪讨英况饯颈篷梯刑桓色秋耘娠轻特在透濒幕誉渣绷砸既衣如驯舔恃菊嫁奸瑚低趋政扣三辊卷板机毕业港险卢疟忻桩显疟耿钥斯屎楚款养磊境蜘唱狈碑漾犀底杖锁肠怔中猛外紧帜献鞘抄粥挥零铭翼悠刮木海醋戎目嚣着秸淄街智纹母耙洒轩商姨颊夹钠饵臀台燃信侧奴篷尿譬肿酿灰企股讹闭闺胜霹钥慈狱真蕴菜杖霖迈凡逆才阜牲溢诽桔奋猫挚琼珠夸盂崔借蚜腊轰篙禁影贺纯轨茨则倾霞靶健训郎升涪捐涌周贞年侵烤披腰毋奎蹄涣催物汁炊亮秘欲巍隙躁扔仕寝瓜善脖避幕边刑掳映赂搽彰肺醒妥谆咕咱扦豢坪廖撰朗妓释卓鞘藕钢狙御诲列祁起赢遂剿喀陈泛匝剪吞尘绣芝拘父缩酉宇起书畅盈芒价拌烙惟凸卑份溜涵颈骡开胀果傀赁郭顽檬旬奠哇锨盛礁焰辖袍棍轩柬惕忻愿葬巾欢策珠荚械痊垛 三辊卷板机设计 摘 要本设计是关于对称式三辊卷板机的设计,主要对卷板机上、下辊及减速器进行设计和计算。设计前部分详细阐述了卷板机上、下辊结构设计和受力分析。板机结构型式为三辊对称式, 在该结构中上辊下压提供压力,两下辊做旋转运动,为卷制板材提供扭矩。它具有结构简单、体积小、重量轻、经济、等优点。动力源则选择了YZ系列YZ160L6型电机,其工作特性优于Y系列电机,适用于有轻微震动,正反转且转速不高的场合。总体设计后部分所涉及的减速器采用了三级展开式圆柱齿轮结构。齿轮材料为40Cr,并经调质及表面淬火。校核齿轮、轴、键、轴承确保了设计的实际可行性。关键词: 卷板机;电动机;减速器;键;齿轮 Three Roller Bending Machine DesignAbstractThis design is about the three-roller symmwtry rolling machine,mainly calcats the up and down roller and the decelerator During the front process of the design,the rolling machines structucre design and the analysis of strength are described. The rolling machine structure is three-roller symmetry. Pressure provides pressure under owing structure the above-average roller , the roller does revolution sport under two , sheet material provides moment of torsion to roll of system.It has a series of advantages such as simply structure,small volume,light weight,economical and so on.YZ type YZ-160L-6 motor is selected as the power source,which adapts situation such as slience quenching and light reverse velocity. The last part of the paper is ahout decelerator which is choosing triple expanding columm gear constiuction .The material of gear is 40Cr which has been hardening surface.The gears, axes, keys, bearings are checked, so to confirm this design is practicalKey words: Rolling machine;Motor;Decelerator;Key;Gear 目 录1绪 论 11.1 概述11.2 卷板机的发展趋势32般小型卷板机结构及特点分析42.1 辊卷板机42.2 三辊卷板机52.2.1 对称式三棍卷板机结构及特点52.2.2 不对称三辊卷板机特点52.3 方案的确定63 传动设计73.1 传动方案的分析及确定73.2 主传动系统的确定83.2.1 副传动系统的确定84 动力设计94.1 主电机的选择和计算94.1.1 上下辊的参数选择计算94.1.2 主电机的功率确定104.2 上辊的设计计算校核204.2.1上辊结构设计及受力图204.2.2 刚度校核204.2.3 上辊强度校核214.2.4 疲劳强度安全强度校核214.2.5 上辊在卸料时的校核224.3 下辊设计计算及校核234.3.1 下辊结构及受力图234.3.2 下辊刚度校核244.3.3 下辊弯曲强度校核244.3.4 下辊疲劳强度校核255 减速器的设计计算285.1 传动方案的分析和确定285.2 减速器传动装置总的传动比和各级传动比的分配285.2.1 总的传动比285.3 传动装置各轴的参数计算295.3.1 各轴转速295.3.2 各轴功率295.3.3 各轴转矩295.4 齿轮传动设计305.4.1 第一级传动设计305.4.2 第二级传动设计345.4.3 第三级传动设计375.5 蜗轮、蜗杆的传动设计405.5.1 材料选择405.5.2 参数的设计405.6 轴的设计校核计算425.6.1 四个轴的结构设计425.6.2 轴的校核计算435.7 轴承校核475.7.1 轴承参数475.7.2 求轴承受到的径向力485.7.3 验算轴承寿命485.8 键的校核486 设备的维护、润滑与维修507 设计可行性分析517.1 设备的经济性分析527.1.1 设备合理使用期的估算 52结 论 54致 谢 55参考文献561绪 论1.1 概述卷板机是一种常见的机械装备,它是一种将金属板材卷弯成筒形、弧形或其他形状工件的通用设备。根据三点成圆的原理,利用工作辊相对位置变化和旋转运动使板材产生连续的塑性变形,以获得预定形状的工件。该产品广泛用于锅炉、造船、石油、化工、木工、金属结构及其它机械制造行业。卷板机采用机械传动以有几十年的历史,由于结构简单,性能可靠,造价低廉,至今在中、小型卷板机中仍广泛应用。卷板机作为一个普遍的机器,它在工业基础加工中占有重要的地位。凡是钢材成型为圆柱型,几乎都用卷板机辊制。其在汽车,军工等各个方面都有应用。根据不同的要求,它可以辊制出符合要求的钢柱,是一种相当实用的器械。卷板机由于使用的领域不同,种类也就不同。从辊数上分三辊卷板机和四辊卷板机。三辊又分对称式三辊卷板机,水平下调式三棍卷板机,弧线下调式卷板机,上辊万能式三辊卷板机,液压数控卷板机。从传动上分机械式和液压式。 从卷板机的发展上说,上辊万能式最落后,水平下调式略先进,弧线下调式最高级。 三辊卷板机三辊卷板机有机械式和液压式:机械式三辊卷板机分为对称和非对称。 机械式三辊对称式卷板机 :机械式三辊对称式卷板机性能特点:该机结构型式为三辊对称式,上辊在两下辊中央对称位置作垂直升降运动,通过丝杆丝母蜗杆传动而获得,两下辊作旋转运动,通过减速机的输出齿轮与下辊齿轮啮合,为卷制板材提供扭矩。该机缺点是板材端部需借助其它设备进行预弯。 机械三辊非对称式卷板机主要特点:该机结构型式为三辊非对称式,上辊为主传动,下辊垂直升降运动,以便夹紧板材,并通过下辊齿轮与上辊齿轮啮合,同时作为主传动;边辊作倾升降运动,具有预弯和卷圆双重功能。结构紧凑,操作维修方便。 液压式三辊对称卷板机主要特点:该机上辊可以垂直升降,垂直升降的液压传动,通过液压缸内的液压油作用活塞杆而获得;下辊作旋转驱动,通过减速机输出齿轮啮合,为卷板提供扭矩,下辊下部有托辊,并可调节。上辊呈鼓形状,提高制品的直线度,适用于超长规格各种截面形状罐。 为上调式对称式三辊卷板机,可将金属板材卷成圆形、弧形和一定范围内的锥形工件,本机种两下辊为主动辊,上辊为从动辊。它广泛使用于造船、锅炉、航空、水电、化工、金属结构及机械制造行业。 适合用于金属板材的弯曲变形,可卷制圆形,弧形和一定范围内的锥形工件,并有板材端部预弯功能,本机型两个下辊为主动辊可水平移动,上辊为从动辊可上下移动,移动方式有机械式和液压式,传动轴均采用万向连轴器连接。 机械式三辊对称式卷板机性能特点:该机结构型式为三辊对称式,上辊在两下辊中央对称位置作垂直升降运动,通过丝杆丝母蜗杆传动而获得,两下辊作旋转运动,通过减速机的输出齿轮与下辊齿轮啮合,为卷制板材提供扭矩。该机缺点是板材端部需借助其它设备进行预弯。 液压式三辊对称卷板机主要特点:该机上辊可以垂直升降,垂直升降的液压传动,通过液压缸内的液压油作用活塞杆而获得;下辊作旋转驱动,通过减速机输出齿轮啮合,为卷板提供扭矩,下辊下部有托辊,并可调节。上辊呈鼓形状,提高制品的直线度,适用于超长规格各种截面形状罐.卷板机采用机械传动已有几十年的历史,由于结构简单,性能可靠,造价低廉,至今在中、小型卷板机中仍广泛应用。在低速大扭矩的卷板机上,因传动系统体积庞大,电动机功率大,起动时电网波动也较大,所以越来越多地采用液压传动。近年来,有以液压马达作为源控制工作辊移动但主驱动仍为机械传动的机液混合传动的卷板机,也有同时采用液压马达作为工作辊旋转动力源的全液压式卷板机。国内外采用冷卷方法较多。冷卷精度较高,操作工艺简便,成本低廉,但对板材的质量要求较高(如不允许有缺口、裂纹等缺陷),金相组织一致性要好。当卷制板厚较大或弯曲半径较小并超过设备工作能力时,在设备允许的前提下可采用热卷的方法。有些不允许冷卷的板材,热卷刚性太差,则采用温卷的方法。卷板机是一种通用性及适应性较高的弯曲整形机械。为提高卷板机的工作效率,提高制品的加工精度,减轻劳动强度,改善工作条件,通常采用板料送料工作台、辅助操作机械、托架平台以及支承滚道等辅助设备。国外有些厂家已有配上自动焊接机、下料机械手等成线或单元供货。1.2 卷板机的发展趋势在近十年我国卷板机工业正在步入一个快速发展的时代,也是我国人民经济的重要产业,对我国人民的作用也越来越大,而我国也会在其在装备工业上的投入力度大大加强,在市场经济的刺激下,产品的更换也要求卷板机装备工业不断在技术和工艺上取得更大的优势:1.从国家计委立项的情况看,卷板机工业1000万以上投入的项目达近百项;2.卷板机工业已建项目的二期改造也将会产生一个很大的用户群;3.由于卷板机的高利润,促使各地政府都纷纷投资(国家投资、外资和民间资本)卷板机制造。其次,跨国公司都开始将最新的车型投放到中国市场,并计划在中国加大投资力度,扩大产能,以争取中国更大的市场份额。民营企业的崛起以及机制的敏锐使其成为卷板机工业的新宠,民营企业已开始成为卷板机装备市场一个新的亮点。卷板机制造业作为机床模具产业最大的买方市场,其中进口设备70%用于卷板机,同时也带动了焊接、涂装、检测、材料应用等各个行业的快速发展。卷板机制造业的技术革命,将引起装备市场的结构变化:数控技术推动了卷板机制造企业的历史性的革命,数控机床有着高精度、高效率、高可靠性的特点,引进数控设备在增强企业的应变能力、提高产品质量等方面起到了很好的作用,促进了我国机械工业的发展。因此,至2010年,卷板机工业对制造装备的需求与现在比将增长12%左右,据预测,卷板机制造业:对数控机床需求将增长26%;对压铸设备的需求将增长16%;对纤维复合材料压制设备的需求增长15%;对工作压力较高的挤或冲压设备需求增长12%;对液压成形设备需求增长8%;对模具的需求增长36%;对加工中心需求增长6%;对硬车削和硬铣消机床的需求增长18%;对切割机床的需求增长30%;对精密加工设备的需求增长34%;对特种及专用加工设备需求增长23%;对机器人和制造自动化装置的需求增长13%;对焊接系统设备增长36%;对涂装设备的需求增长8%,对质检验与测试设备的需求增长16%。在今后的机械生产中,卷板机会得到很好的使用。它能更经济更省力的用以弯曲钢板。可以说是必须的的高效机械设备。随着时代的发展,科技在进步,国民经济水平的高速发展将对这个机械品种提高,将促使这个设计行业 的迅速发展。2般小型卷板机结构及特点分析2.1 辊卷板机双辊卷板机的原理如图2.1所示: 图2.1 双辊卷板机工作原理图上辊是钢制的刚性辊,下辊是一个包有弹性的辊,可以作垂直调整。当下辊旋转时,上辊及送进板料在压力作用下,压人下辊的弹性层中,使下辊发生弹性变形。但因弹性体的体积不变,压力便向四面传递,产生强度很高,但分布均匀的连续作用的反压力,迫使板料与刚性辊连续贴紧,目的是使它随着旋转而滚成桶形。上辊压人下辊的深度,既弹性层的变形量,是决定所形成弯曲半径的主要工艺参数。根据实验研究,压下量越大,板料弯曲半径越小;但当压人量达到某一数值时,弯曲半径趋于稳定,与压下量几乎无关,这是双辊卷板机工艺的一个重要特征。双辊卷板机具有的优点:1.不必端头弯曲,加工速度快;2.在一次行程中有做高精度成型的可能;3.板坯即使是经过冲孔、切口、起伏成型等加工,也不致产生折裂及不规则翘曲等;4.不产生皱折,不在制件表面造成划痕;5.如果把棍轮的压下量取大,即使俩棍轮的间距有所变动而制件的直径也不发生变化,因此设备精度不是很高也行,使用的是简单的装置等等。另一方面,二棍卷板机的缺点是1.由于相对于制件直径的每一个变化都需要制作导向辊轮,故不适于多品种小批量生产; 2.不能做厚板的加工(最大加工板料69mm)。2.2 三辊卷板机三辊卷板机是目前最普遍的一种卷板机。利用三辊滚弯原理,使板材弯曲成圆形,圆锥形或弧形工作。2.2.1 对称式三棍卷板机结构及特点对称式三棍卷板机,由工作辊、机架、传动系统和机座等组成。通常两个下辊为主动辊,相对于上辊作对称布置,上辊为从动辊,可垂直调节,所以也称对称上调式三棍卷板机。机器一侧安装有倾倒轴承,称为机器的倾倒侧,另侧安装有传动系统,称为机器的传动侧。除去全机械传动的对称式三棍卷板机,还有半液压半机械传动的对称式三棍卷板机。传动侧的翘起机构和倾倒侧的轴承倾倒机构均是为方便卸下卷制成形的筒件。通过倾倒机构能把轴承体倾倒8590,翘起机构可把上工作辊翘起13。在中小型对称式三棍卷板机中大多采用手动倾倒机构和手动翘起机构。在大型的对称式三棍卷板机中,大多采用液压驱动的翘起机构倾倒机构。结构简单、紧凑,质量轻、易于制造、维修、投资小、两侧辊可以做的很近。形成较准确,但剩余直边大。一般对称三辊卷板机减小剩余直边比较麻烦。2.2.2 不对称三辊卷板机特点剩余边小,结构简单,但坯料需要调头弯边,操作不方便,辊筒受力较大,弯卷能力较小。所谓理论剩余直边,就是指平板开始弯曲时最小力臂。其大小与设备及弯曲形式有关。如图2.2所示: 图2.2 三辊卷板机工作原理图对称式三辊卷板机剩余直边为两下辊中心距的一半。但为避免板料从滚筒间滑落,实际剩余直边常比理论值大。一般对称弯曲时为板厚620倍。由于剩余直边在校圆时难以完全消除,所以一般应对板料进行预弯,使剩余直边接近理论值。不对称三辊卷板机,剩余直边小于两下辊中心的一半,如图2.2所示,它主要卷制薄筒(一般在323000以下)。2.3 方案的确定通过上节一般小型卷板机结构特点的分析,根据各种类型卷板机的特点,再根据三辊卷板机的不同类型所具有的特点,最后形成本设计方案,122000对称上调三辊卷板机。双辊卷板机不需要预弯、结构简单,但弯曲板厚受限制,只适合小批量生产。虽然三辊卷板机不能预弯,但是可以通过手工或其它方法进行预弯。3 传动设计对称上调式三辊卷板机如图3所示:图3.1 上调式三辊卷板机简图它是以两个下辊为主动轮 ,由主动机、联轴器、减速器及开式齿轮副驱动。上辊工作时,由于钢板间的摩擦力带动。同时作为从动轴,起调整挤压的作用。由单独的传动系统控制,主要组成是:上辊升降电动机、减速器、蜗轮副、螺母。工作时,由蜗轮副转动蜗轮内螺母,使螺杆及上辊轴承座作升降运动。两个下辊可以正反两个方向转动,在上辊的压力下下辊经过反复的滚动,使板料达到所需要的曲率,形成预计的形状。3.1 传动方案的分析及确定卷板机传动系统分为两种方式:齿轮传动和皮带传动。皮带传动方式具有传动平稳,噪音下的特点,同时以起过载保护的作用,这种传动方式主要应用于具有一个主动辊的卷板机。齿轮传动方式具有工作可靠,使用寿命长,传动准确,效率高,结构紧凑,功率和速度适用范围广等特点。所设计的是三辊卷板机,具有两个主动辊,而且要求结构紧凑,传动准确,所以选用齿轮传动3.2 主传动系统的确定图3.2 传动系统所以选用了圆柱齿轮减速器,减速器通过联轴器和齿轮副带动两个下辊工作。3.2.1 副传动系统的确定为调整上下辊间距,由上辊升降电动机通过减速器,蜗轮副传动蜗轮内螺母,使螺杆及上辊轴承座升降运动,副传动系统如图3.2所示。4 动力设计4.1 主电机的选择和计算4.1.1 上下辊的参数选择计算1. 已知设计参数:加工板料:Q235-A 屈服强度:s=235MPa 抗拉强度:b=420MPa辊材:50 Mn 屈服强度:s=930MPa 抗拉强度:b=1080MPa硬度:HBS229HB板厚:s=12 mm 板宽:b=2000mm 滚筒与板料间的滑动摩擦系数:m=0.18 滚筒与板料间的滚动摩擦系数:f =0.8(冷卷)无油润滑轴承的滑动摩擦系数:=0.05板料截面形状系数:K1=1.5 (矩形)板料相对强化系数:K0=11.6 (A3钢) 板料弹性模量: E=2.06105MPa卷板速度:V6 m/min2. 确定卷板机基本参数下辊中心矩:t=(1240)s =390mm 上辊直径:下辊直径: 上辊轴直径: 下辊轴直径:最小卷圆直径:筒体回弹前直径:其中。4.1.2 主电机的功率确定因在卷制板材时,板材不同成形量所需的电机功率也不相同,所以要确定主电机功率,板材成形需按四次成形计算:1成形40%时1)板料变形为40%的基本参数2)板料由平板开始弯曲时的初始弯矩M1其中W为板材的抗弯截面模量:3)板料变形40%时的最大弯矩M0.44) 上辊受力: 下辊受力: 5)消耗于摩擦的摩擦阻力矩6)板料送进时的摩擦阻力矩7)拉力在轴承中所引起的摩擦阻力矩8)卷板机空载扭矩空载扭矩与主动辊、板材以及联轴节的重量有关,一般忽略不计。9)卷板机送进板料时的力矩10)卷板时板料不打滑的条件:,所以满足。11)驱动功率:2成形70%时1)板料变形为70%的基本参数2)板料变形70%时的最大弯矩M0.73) 上辊受力: 下辊受力: 4)消耗于摩擦的摩擦阻力矩5)板料送进时的摩擦阻力矩6)拉力在轴承中所引起的摩擦阻力矩7)卷板机送进板料时的力矩8)卷板时板料不打滑的条件:,所以满足。9)驱动功率:3成形90%时1)板料变形为90%的基本参数2)板料变形90%时的最大弯矩M0.93)上辊受力: 下辊受力: 4)消耗于摩擦的摩擦阻力矩5)板料送进时的摩擦阻力矩6)拉力在轴承中所引起的摩擦阻力矩7)卷板机送进板料时的力矩8)卷板时板料不打滑的条件:,所以满足。9)驱动功率:4成形100%时1)板料变形为100%的基本参数2)板料变形100%时的最大弯矩M1.03) 上辊受力: 下辊受力: 4)消耗于摩擦的摩擦阻力矩5)板料送进时的摩擦阻力矩6)拉力在轴承中所引起的摩擦阻力矩7)卷板机送进板料时的力矩8)卷板时板料不打滑的条件:,所以满足。9)驱动功率:综合上述的计算结果总汇与表4表4计算结果总汇 成形量计算结果40%70%90%100%简体直径(mm)1266.518723.724562.899506.607简体曲率半径R(mm)639.259367.862287.45259.304初始变形弯矩M1(kgfmm)1.692107村料受到的最大变形弯矩M(kgfmm)1.8151071.9051071.9651071.995107上辊受力Pa(kgf)2.3251052.3761052.5031052.972105下辊受力Pc(kgf)1.1971051.2891051.4191051.281105村料变形弯矩Mn1(kgfmm)3.2921061.8691061.7661068.972105摩擦阻力扭矩Mn22.3211062.4281062.6151062.725106材料送进时摩擦阻力扭矩Mn31.3811061.4231061.5091061.727106空载力矩0拉力引起摩擦扭矩Mn41.5191051.3081051.0641058.529104Mn1+Mn34.6731064.0241063.2751062.624106总力矩M05.1711065.5681064.9641065.534106驱动力矩Mn5.7691065.1191064.4971064.485106驱动功率N (kw)7.9547.4087.1517.0195主电机的选择:由表4.1可知,成形量为40%时所需的驱动功率最大,考虑工作机的安全系数,电动机的功率选11kw。因YZ系列电机具有较大的过载能力和较高的机械强度,特别适用于短时或断续周期运行、频繁起动和制动、正反转且转速不高、有时过负荷及有显著的振动与冲出的设备。其工作特性明显优于Y系列电机,故选YZ160L6型电机,其参数如下:N=11kw; r=953r/min; Fa=40%; G=160kw。4.2 上辊的设计计算校核4.2.1上辊结构设计及受力图由上部分计算可知辊筒在成形100%时受力最大: 故按Pamax计算,其受力图4.1:图4.1 上辊受力图4.2.2 刚度校核挠度: 确定公式各参数:(Ia为轴截面的惯性矩) 得: 因为,所以上辊刚度满足要求。4.2.3 上辊强度校核危险截面为、,因、 相同,且,所以只需校核、处: : 故安全,强度合乎条件。4.2.4 疲劳强度安全强度校核50Cr: 在截面、处,所以只需校核、处:处:r=0 则因上辊转矩T=0,故:应力集中系数 表面质量系数 尺寸影响系数 弯曲平均应力处: 故:疲劳强度满足条件。4.2.5 上辊在卸料时的校核根据上辊的受力情况,只需考虑弯曲强度即可,卸料时其受力如下图4.2: 板重: 上辊重: 总重: 图4.2 上辊卸料受力图由受力图4.2可知: 故:卸料时弯曲强度满足。4.3 下辊设计计算及校核4.3.1下辊结构及受力图下辊受力如图4.3图4.3 下辊受力图受力:k 主电机齿轮啮合效率: 联轴器效率: 轴承效率:总传动效率: 转矩: 4.3.2下辊刚度校核挠度: I为轴截面的惯性矩: 故:安全。4.3.3 下辊弯曲强度校核由受力图知弯曲强度危险截面在、处:处: 安全系数:处: 安全系数 故安全,故弯曲强度满足。4.3.4 下辊疲劳强度校核初选、截面:、同类;、同类;、处:;、处:显然 , 故仅校核、即可。疲劳强度校核公式 截面: 应力集中系数 表面质量系数尺寸影响系数 弯曲平均应力 应力集中系数 表面质量系数尺寸影响系数弯曲平均应力和应力副 所以:截面处满足疲劳强度要求。截面: 应力集中系数 表面质量系数尺寸影响系数 弯曲平均应力应力集中系数 表面质量系数尺寸影响系数弯曲平均应力和应力副 故满足疲劳强度要求。截面: ,应力集中系数 表面质量系数尺寸影响系数 弯曲平均应力应力集中系数 表面质量系数尺寸影响系数弯曲平均应力和应力副 故满足疲劳强度要求。 刚度条件满足。 满足弯曲强度要求。5 减速器的设计计算5.1 传动方案的分析和确定本设计的卷板机卷板时所需的大功率是由一个主电机通过减速器传递给个下辊来获得的,为了避免两下辊发生干涉,故减速器采用对称式结构。又因减速器转速较高,而减速器输也轴转速较低,故总传动比较大。考虑到经济性,故采用结构简单、展开式的减速器。传动方案如图5.1:图5.1 减速器结构图5.2 减速器传动装置总的传动比和各级传动比的分配5.2.1 总的传动比n0=7.074r/min ni=953r/min 5.2.2 传动比的分配考虑润滑条件,为使两级大齿轮直径相近,取: 故: 5.3传动装置各轴的参数计算5.3.1 各轴转速5.3.2 各轴功率各轴输入效率:1=0.97 联轴器效率:2=0.99 轴承:3=0.98轴: P=P001=110.9910.89lw轴: P=P12=10.890.980.9710.352kw轴: P=P23=10.3520.980.979.841kw轴: P=P34=9.8410.980.979.355kw5.3.3 各轴转矩电动机轴: 轴: 轴: 轴: 轴: 将上述结果汇总于表5.1以备查用。表5.1 减速器参数表轴名功率(kw)转矩T(Nm )转速n(r/min)传动比i效率电动机轴11110.23195310.99轴10.89109.1299530.976.2轴10.352643.170153.7100.974.8轴9.8412934.81432.0230.974.527轴9.35512623.3827.0710.975.4 齿轮传动设计因合金结构钢比碳素调质钢具有较好塑性和韧性,即有较好的综合机械性能,再综合卷板机的工作特性:低速、大功率、交变负荷,所以选择较为适合的合金结构钢40Cr。对于大型减速器,为了提高箱体的强度,选用箱体材料为铸铁或铸钢。5.4.1第一级传动设计1.齿轮参数选择1)选用挟持斜齿圆柱齿轮传动。2)材料热处理:因此级传递功率校大,磨损严重,考虑磨损对齿轮强度的削弱,齿轮材料为40Cr,表面需调质处理,齿面硬度为4855HRC。3)选取精度等级:选7级精度(GB10095-88)。4)选小齿轮数:Z1=24, Z2=uZ1=148.8,Z2取149齿数比:u= 6.2 由于u5所以采用斜齿=152.按齿面接触强度计算和确定齿轮尺寸(1)确定公式内各参数a)试选载荷系数:Kt=1.3 b)小齿轮传递扭矩:T1=1.093105 Nmmc)齿宽系数: 材料的弹性影响系数: 取=20 其中 e)按齿面硬度中间值52HRC查得大小齿轮的接触疲劳强度极限:f)计算应力循环次数:N1=60n1JLn=609531(2830015)4.117109N2=4.117/6.2=6.64108g)查得接触疲劳寿命系数:ZN1=1.0 ZN2=1.0h)计算接触疲劳许用应力:安全系数S1 所以: (2)计算a)试算小齿轮分度直径d1t: b)计算圆周速度V:c)齿宽b:d)齿宽与齿高之比b/h:模数: mtd1t/Z152.53/242.195mm齿高: h2.25mt2.252.1954.939mm齿高之比 : b/h47.407/4.9399.599e)计算载荷系数:根据v=2.621m/s,7级精度动载荷系数:Kv=1.11 KH=KF=1.4 使用系数:KA=1 KH=1.41KF=1.46故载荷系数: K=KHKVKHKH=11.111.411.4=2.191f)按实际载荷系数校正分度圆直径:g)计算模数m: m=d1/Z1=52.23/24=2.666mm3.按齿根弯曲强度设计:(1)确定公式内的各计算数值a)查大小齿轮的弯曲疲劳强度极限:b)查得弯曲疲劳寿命系数: c)计算弯曲疲劳许用应力:取安全系数S1.4d)计算载荷系数K:e)查取齿形系数: f)查取应力校正系数: g)计算大小齿轮的并加以比较: 故小齿轮数值较大。(2)模数设计算因为齿轮模数m的大小是由齿根弯曲疲劳强度计算所得的承载能力决定的,而齿面接触疲劳强度计算所得的承载能力仅与齿轮直径有关,又因齿面接触疲劳强度计算的模数m大于齿根弯曲疲劳的计算模数,故取弯曲强度算得模数m1.68mm,圆整后m2mm。校正后的分度圆直径d1=64mm。齿数Z1、Z2: Z1=d1/m=64/2=32 取Z1=32 Z2=i1Z1=200确定: 4.几何尺寸计算a)两齿轮的分度圆直径: b)中心距: a=(d1+d2)/2=241mmc)齿宽: 故取:b1=65 ,b2=60。5.验算 故:假设正确,设计合理。 5.4.2 第二级传动设计1齿轮参数选择1)选用圆柱直齿传动2)材料热处理:因此级传递功率校大,磨损严重,考虑磨损对齿轮强度的削弱,齿轮材料为40Cr,表面需调质处理,齿面硬度为4855HRC。3)选取精度等级:选7级精度(GB10095-88)。4)选小齿轮数:Z1=24, Z2=iZ1=4.824=115. Z2取116 齿数比:u= 4.82按齿面接触强度公式设计(1)确定公式内各参数a)试选载荷系数:Kt=1.3 b)小齿轮传递扭矩:T1=6.432105 Nmmc)齿宽系数: 材料的弹性影响系数:d) 按齿面硬度中间值52HRC,查得大小齿轮的接触疲劳强度极限:e)计算应力循环次数:N1=60n1JLn=60153.711(2830015)6.64108N2=6.64108/4.8=1.383108f)接触疲劳寿命系数: ZN1=1.0 ZN2=1.0g)计算接触疲劳许用应力:安全系数S1 所以: (2)计算a)试算小齿轮分度直径d1t: b)计算圆周速度:c)齿宽b:d)齿宽与齿高之比b/h:模数:mtd1t/Z171.44/242.99mm 齿高:h2.25mt2.252.996.723mm齿高之比:b/h64.57/6.7289.597e)计算载荷系数:动载荷系数:Kv=1.03 KH=KF=1.1 使用系数:KA=1 KH=1.323 KF=1.39故载荷系数: K=KHKVKHKH=11.031.11.323=1.499f)按实际载荷系数校正分度圆直径:g)计算模数m: m=d1/Z1=75.232/24=3.167mm3.按齿根弯曲强度设计 (1)确定公式内的各参数a)查大小齿轮的弯曲疲劳强度极限:b)弯曲疲劳寿命系数: c)计算弯曲疲劳许用应力:取安全系数S1.4d)计算载荷系数K:e)查取齿形系数: f)查取应力校正系数: g)计算大小齿轮的并加以比较: 因为: 所以小齿轮的数值较小。(2)模数设计计算因为齿轮模数m的大小是由齿根弯曲疲劳强度计算所得的承载能力决定的,而齿面接触疲劳强度计算所得的承载能力仅与齿轮直径有关,又因齿面接触疲劳强度计算的模数m大于齿根弯曲疲劳的计算模数,故取弯曲强度算得模数m3.227mm,圆整后m4mm。校正后的分度圆直径d1=71.744mm。齿数Z1、Z2:Z1=d1/m=71.744/4=21.7 取Z1=25 Z2=iZ1=1204. 几何尺寸计算a两齿轮的分度圆直径: b)中心距: a=(d1+d2)/2=290mmc)齿宽: 故取b1=90 ,b2=85。5. 验算: 故:假设正确,设计合理。5.4.3 第三级传动设计1齿轮参数选择1)选用圆柱直齿传动2)材料热处理:因此级传递功率校大,磨损严重,考虑磨损对齿轮强度的削弱,齿轮材料为40Cr,表面需调质处理,齿面硬度为4855HRC。3)选取精度等级:选7级精度(GB10095-88)。4)选小齿轮数:Z1=28, Z2=iZ1=4.52728=126.76 Z2取127齿数比:u= 4.5272按齿面接触强度公式(1) 确定公式内各参数a)试选载荷系数:Kt=1.3 b)小齿轮传递扭矩:T1=2.935106 Nmmc)得齿宽系数: 材料的弹性影响系数:d) 按齿面硬度中间值52HRC查得大小齿轮的接触疲劳强度极限:f)计算应力循环次数: N1=60n1JLn=6032.0231(2830015)1.383108 N2=1.383108/4.527=3.06107g)接触疲劳寿命系数:ZN1=1.0 ZN2=1.02h)计算接触疲劳许用应力:安全系数S1因为所以 (2)计算a) 试算小齿轮分度直径d1t: b)计算圆周速度:c)齿宽b:d)齿宽与齿高之比b/h:模数: mtd1t/Z1118.09/284.217mm 齿高: h2.25mt2.254.2179.488mm齿高之比: b/h119/9.48811.2e)计算载荷系数:动载荷系数:Kv=1.02 KH=KF=1.1 KA=1 KH=1.329 KF=1.39故载荷系数: K=KHKVKHKH=11.021. 11.329=1.491f)按实际载荷系数校正分度圆直径:g)计算模数m: m=d1/Z1=123.6/28=4.41mm3. 按齿根弯曲强度设计(1) 确定公式内的各参数 a)由文献查大小齿轮的弯曲疲劳强度极限: b)由文献查得弯曲疲劳寿命系数: c)计算弯曲疲劳许用应力: 取安全系数S1.4 d)计算载荷系数K: e)查取齿形系数: f)查取应力校正系数: g)计算大小齿轮的并加以比较: 故小齿轮数值较大。2)模数设计计算因为齿轮模数m的大小是由齿根弯曲疲劳强度计算所得的承载能力决定的,而齿面接触疲劳强度计算所得的承载能力仅与齿轮直径有关,又因齿面接触疲劳强度计算的模数m大于齿根弯曲疲劳的计算模数,故取弯曲强度算得模数m4.976mm,圆整后m5mm。校正后的分度圆直径d1=124mm。齿数Z1、Z2:Z1=d1/m=124/5=25 取Z1=25 Z2=iZ1=1144. 几何尺寸计算a)分度圆直径:d1=Z1*m=25*5=125mm d2=Z2*m=114*5=570mmb)中心距: a=(d1+d2)/2=347.5mmc)齿宽: 故取b1=115 b2=1105. 验算故:假设正确,设计合理。 5.5 蜗轮、蜗杆的传动设计蜗杆传递名义功率8.35kw,转速n1=100r/min,传动比i=40。蜗杆传动的主要参数有模数、压力角、蜗杆头数、蜗轮齿蜗杆中圆直径及蜗杆直径系数。按照蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动、环面蜗杆传动和锥蜗杆传动等。环面蜗杆传动具有的特点:同时齿合的齿的对数多,轮齿受力情况得到较大改善,其承受能力高于普通圆柱蜗杆传动。由于传动三辊卷板机上辊的上下运动需要较大的强度,所以我选择包络环面蜗杆传动。5.5.1 材料选择蜗杆:40Cr,表面淬火,HRC50齿面粗糙度Ra0.8蜗轮:ZCuSn10P1,传动选用7级精度,标准侧隙,三棍卷板机间隙工作。5.5.2 参数的设计1. 求传动的中心距书:式中,K1、K2、K3、K分别为: 1、1.0、0.8、1 由文献查得a=175mm,取成标准值a=180mm2. 主要几何尺寸计算Z1=1,Z2=40da2=312mm, diz=245mm, de2=315mmb2=38mm, Ra2=40mm, db=125mm其余项目由公式计算得:蜗轮端面模数: 径向间隙和根部圆角半径: c=r=0.2m=1.504mm齿顶高: ha=0.75m=5.64mm 齿根高:hf=ha+c=7.144mm蜗轮分度圆直径 :d2=da2-2ha=300.72mm蜗轮齿根圆直径 :df2=d2-2hf=286.432mm蜗杆分度圆直径 :d1=2a-d2=48mm蜗杆喉部齿根圆直径 :df1=da-2hf=48-2*7.144=33.712mm蜗杆喉部齿顶圆直径 :da1=d1+2ha=59.28mm蜗杆齿顶圆弧半径 :Ra1=a-0.5da1=150.36mm蜗杆齿根圆弧半径 :Rf1=a-0.5df1=163.144mm周节角 : 蜗杆包容蜗轮齿数 :Z=Z2/10=4蜗杆工作包角之半 : 蜗杆工作部分长度 :蜗杆最大根径:蜗杆最大外径 :蜗杆喉部螺旋导角 : 分度圆压力角 :5.6轴的设计校核计算5.6.1 四个轴的结构设计各轴材料为40Cr, A0=104.5mm。I轴:P=10.89kw n=953r/min 取d=30mm,故I轴可设计为齿轮轴。轴I的结构如图5.2图5.2 轴结构图轴II: P=10.352kw n=153.71r/min A0=104.5mm轴II结构如图5.3 图5.3 轴结构图轴III:P=9.841kw n=32.023r/min A0=104.5mm轴III的结构图5.4图5.4 轴结构图轴: P=9.355kw n=7.071r/min 由材料40Cr查表取得:A0=104.5轴的结构简图5.5:图5.5 轴图因小轴直径d与联轴器的孔径相配合的,故需先选定联轴器。计算联轴器转矩:Tca=KAT3=1.1841.262104=14942.08 Nm。选用ZL10联轴器(GB501585 ),其公称转矩为31500Nm。 5.6.2 轴的校核计算1. 轴的弯矩计算由于轴的作为输出轴其转速最小,扭距最大故只对轴进行校核计算。轴的支承跨距L=155+14+108+60=337mm。由轴结构图5.5和弯距的计算得出截面B是轴的危险截面,根据受力图绘出轴的弯矩、扭矩图和当量弯矩图5.6。B面受力分析:a) 转矩:T1.26107 Nmm b) 直径:已知d=570mmc) 求圆周力:Ft=2T/d=44211Nd) 求径向力Fr: Fr=Fttan=44211tan200=16091.316Ne) 求支反力:RV1 、 RV2 、 RH1 、 RH2 RV111579.063N, RV24512.253NRH131813.555N , RH212397.455Nf)弯矩: MH=3.706106 N.mm MV= 1.349106 Nmmg)总弯矩: h)扭矩: T=0.61.25107=7.56106Nmm(0.6)i) 计算当量弯矩:图5.6 轴弯扭距图将上述结果列表5.2: 表5.2 轴弯扭距计算结果载荷水平面H垂直面支反力R(N)RH1=31813.553N RH2=12397.455NRV1=11579.063N RV2=4512.253N弯矩M(Nmm)MH=1.094106 NmmMV= 3.006106 Nmm总弯矩(Nmm)M3.199106 Nmm扭矩T(Nmm)T7.56106 Nmm当量弯矩McaMca8.527106 Nmm2. 轴强度校核 -1=70MPa,因ca-1=70MPa,所以安全。3. 轴疲劳强度校核(1) 确定危险截面因截面A、受力要比、处小,所以截面A、无需校核。因截面、处采用过盈配合,所以应力最集中,但截面不受扭矩作用,轴径也比截面处大,故只对截面校核。截面B处虽受力很大,但应力集中明显校截面小,轴径也比截面大,所以截面B处不需校核。(2) 截面左侧a抗弯截面系数:b抗扭截面系数:c左侧弯矩: d扭矩: T=1.26 107Nmm e弯曲应力:f剪切应力:g轴材为40Cr,查文
展开阅读全文