随机变量的性质

上传人:zhu****ei 文档编号:252999323 上传时间:2024-11-27 格式:PPT 页数:23 大小:543.11KB
返回 下载 相关 举报
随机变量的性质_第1页
第1页 / 共23页
随机变量的性质_第2页
第2页 / 共23页
随机变量的性质_第3页
第3页 / 共23页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,1,随机变量的性质,2,随机变量定义,随机变量的独立性,随机变量的矩与相关系数,随机变量分布的峰度和偏度,随机变量的矩母函数和特征函数,极限定理,主要内容,3,随机变量的提出:,观察一个随机现象,其随机事件有些是数量性质,有些是非数量性质的。,非数量性质的随机事件很难运用成熟的数学方法去处理,即使对数量方式刻画的随机事件由于缺乏规范性和统一性,在进行数学处理时通常也会存在一些问题。为此,人们提出了一种与事件的原始描述形态相对应、易于数学处理、比较规范、并有许多共性的数学描述方法,这就是所谓的随机事件的随机变量表示。,借助于随机变量对,上的事件进行数学化刻画以后,我们既可以利用概率测度,P,评价,F,中的事件,又可以广泛借助于数学方法对,F,中的事件进行更全面、更深入的认识。,注意:,随机变量的定义也必须遵循一定的规则。对于概率空间,(,F,P),,尽管,的所有随机事件皆可以用随机变量来描述,但我们只对评测,F,中的事件感兴趣,而且也只有,F,中的随机事件才是可测的,或者说只有对,F,中事件才能进行概率测度。,随机变量定义的界定,4,定义,称映射,:,R,1,是随机变量(或者,F,可测的),若,A,B,(R1),,,-1(A)=w|,(w),A,F,,即,-1(A),是,F,中的事件。,显然,,G,-1(A)|A,B,(R1),是,F,中的集合簇。我们把由,G,生成的,代数,(,G,),称为由随机变量,生成的,代数,记作,(,),(,),是使,可测的最小,代数。,定义,5,多维随机变量,设,(,F,P),为概率空间,称,(,1(w),2(w),n(w):,R,n,是多维随机变量,当且仅当,的每个分量都是,F,可测的。,同样,我们也可以定义多维随机变量,:,R,n,的分布函数:对,x=(x1,xn),R,n,,定义,F(x)=F(x1,xn)=P(w|,1(w),x1,n(w),xn),,,则称,F,为,的,n,维联合分布函数。对,m n,,在联合分布函数中将其中,n-m,个变量用,+,来代替,就可得到对应于,的,m,个分量的边际分布函数。,例如:,F(x1,+,+,)=P(w|,1(w),x1,2(w),+,n(w),+,),是一维边际分布函数,实质上也是分量,1,的分布函数。,6,多维随机变量,若存在一个非负实函数,f,:,Rn,R1,,使得对,A,B,(Rn),,满足,P,(A)=P(w,|,(w),A)=f(x)dx,则称,f,为,n,维,随机变量,的密度函数,,此时,n,维随机变量的联合分布函数表示为,我们经常使用的概率分布有二项分布、,Poission,分布、正态分布、对数正态分布、高斯分布、,2,-,分布、,t-,分布、,F,分布等。,7,随机变量的独立性,定义,设,1,2,n,为定义在,(,F,P),上的随机变量,若对,Ai,B,(R1),,,i=1,2,n,,有,P(w|,1(w),A1,2(w),A2,n(w),An)=,P(w|,i(w),Ai),则称,1,2,n,是相互独立的。,8,随机变量的独立性,另外,还有等价定义为:称,1,2,n,相互独立,若对任意实数,x1,x2,xn,,有,P(,1,x1,2,x2,n,xn)=P(,1,x1)P(,2,x2),P(,n,xn),上式等价于,F(x1,x2,xn)=F1(x1)F2(x2),Fn(xn),其中,,F,是随机向量,(,1,2,n),的联合分布函数,,F1,Fn,分别为随机变量,1,2,n,的一维边际分布函数。,9,随机变量的矩与相关系数,定义,设,为概率空间,(,F,P),上的随机变量,若积分,|,k,|d,P,+,,则称,k,d,P,为,的,k,阶矩,记作,E,k,;,同理,可定义,k,阶中心矩,E(,E,),k,),;,称一阶矩,E,为,的数学期望,记为,E,;,称二阶中心矩,E(,E,),2,),为,的方差,记作,2,或,V,;,称,为,的标准差。,10,多维随机变量的数学期望和方差,:,对维随机向量(,1,2,n,),若每个随机变量,i,(i=1,2,n),都有有限数学期望,则称,Cov(,i,j)=E(,i,E,i)(,j,E,j),=E,i,j,E,iE,j,(i,j),为随机变量,i,与,j,的协方差,或称为二阶混合中心矩;,11,若,i,,,j,的方差,V,i,和,V,j,非零有限,则定义,i,与,j,的相关系数为,容易推理得,0,|,(,i,j)|,1,。,12,方差,-,协方差矩阵,:,我们称,n,阶方阵,为,n,维随机向量(,1,2,n,)的方差,-,协方差矩阵,记为,,显然方差,-,协方差矩阵,为非负定的对称矩阵。同理,我们也可以得到由,(,i,j),组成的相关系数矩阵。,13,数学期望和方差有一条重要性质:,若,1,2,n,相互独立,则,E(,1,2,n,)=E,1,E,2,E,n,通过上式可以知道,当两个随机变量,与,相互独立时,,(,)=0,,即两随机变量不相关。,14,随机变量的峰度和偏度,设,为定义在概率空间,(,F,P),上的某随机变量,则用,的标准化的三阶中心矩来定义,的偏度,即,所有对称分布的偏度都为,0,,偏度不为,0,的分布曲线是右偏斜或左偏斜。,15,用,的标准化的四阶中心矩来定义,的峰度,即,正态分布的偏度为,0,,峰度为,3,,厚尾分布的峰度大于,3,,甚至有无限峰度。,16,在实际应用中,也可以用样本数据去估计偏度和峰度,以找到样本数据的变化规律。假设有样本数据,,则样本均值,和方差,分别为,17,这样,样本的偏度 和峰度 分别为,18,从前面的分布可以看出,我们可以用随机变量分布函数、数学期望、方差等数字特征来了解随机变量某些特征和统计规律。,数字特征是由随机变量的有阶矩决定的。随着矩阶数的提高,例如偏度和峰度,,矩的直接计算越来越复杂,非常需要一个简便有效的计算工具,,于是特征函数和母函数就应运而生了。,特征函数是将数学中著名的,Fourier,变换应用到分布函数或密度函数而产生的。由于特征函数比分布函数具有更好的性质,例如连续性、可导性等,所以凭借这些良好特性和反演公式,我们既可以很方便用以求分布函数、各阶矩,也可以用来研究随机变量其他方面更多的规律。当处理离散型随机变量时,则用母函数更为方便,因为此时可以充分利用幂级数的性质而避免再引进更复杂的复函数积分。,随机变量的矩母函数和特征函数,19,定义:,设为随机变量,则称数学期望,为矩母函数。,原点矩的求法:利用矩母函数可求得的各阶矩,即对逐次求导并计算在点的值:,20,计算在 点的值得,矩母函数的名称就来自此性质。,21,矩母函数:,定理:,设相互独立的随机变量,的矩母函数分别为 ,则其和,的矩母函数为,由于一个随机变量的矩母函数不一定存在,故理论上更方便的是定义特征函数,.,22,通过概率理论得到的基本认识为:大量个体的随机现象的共同运动产生了非随机的规律,其中最主要的规律就是,大数定律,和,中心极限定理,。,大数定律,的基本含义是随着同类独立的随机现象的大幅度增加,事件发生的频率呈现出稳定性的规律。,中心极限定理,处理的是这类现象,即由彼此不相干的随机因素叠加而成,而每一因素作用不大,但由项数越来越多、值越来越小的随机变量的和组成的序列呈现出正态性的规律。,大数定律和中心极限定理是自然科学、工程技术、经济金融、甚至日常生活中经常见到的随机规律。,极限定理,23,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!