资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,第三章 非稳态导热,*,第三章非稳态导热,1,第三章 非稳态导热,3-1 非稳态导热的基本概念,1 非稳态导热的定义.,2 非稳态导热的分类,周期性非稳态导热,(定义及特点,),瞬态非稳态导热,(定义及特点),2,第三章 非稳态导热,着重讨论瞬态非稳态导热,3 温度分布:,3,第三章 非稳态导热,4 两个不同的阶段,非正规状况阶段,(不规则情况阶段),正规状况阶段,(正常情况阶段),温度分布主要取决于边界条件及物性,温度分布主要受初始温度分布控制,非正规状况阶段(起始阶段)、正规状况阶段、新的稳态,导热过程的三个阶段,4,第三章 非稳态导热,5 热量变化,1,板左侧导入的热流量,2,板右侧导出的热流量,5,第三章 非稳态导热,6 学习非稳态导热的目的:,(1)温度分布和热流量分布随时间和空间的变化规律,(2)非稳态导热的导热微分方程式:,(3)求解方法:,分析解法、近似分析法、数值解法,分析解法:,分离变量法,、积分变换、拉普拉斯变换,近似分析法:,集总参数法,、积分法,数值解法:,有限差分法,、蒙特卡洛法、有限元法、,分子动力学模拟,6,第三章 非稳态导热,7 毕渥数,本章以第三类边界条件为重点。,(1)问题的分析,如图所示,存在两个换热环节:,t,f,h,t,f,h,x,t,0,t,f,h,x,t,0,a 流体与物体表面的对流换热环节,b 物体内部的导热,(2)毕渥数的定义:,7,第三章 非稳态导热,无量纲数,当 时,因此,可以忽略对流换热热阻,当 时,因此,可以忽略导热热阻,?,?,(3)Bi数对温度分布的影响,8,第三章 非稳态导热,B,i,准则对温度分布的影响,Bi,准则对无限大平壁温度分布的影响,9,第三章 非稳态导热,(4)无量纲数的简要介绍,基本思想:,当所研究的问题非常复杂,涉及到的参数很多,为了减少问题所涉及的参数,于是人们将这样一些参数组合起来,使之能表征一类物理现象,或物理过程的主要特征,并且没有量纲。,因此,这样的无量纲数又被称为,特征数,,或者,准则数,,比如,毕渥数又称,毕渥准则。,以后会陆续遇到许多类似的准则数。特征数涉及到的几何尺度称为特征长度,一般用符号,l,表示。,对于一个特征数,应该掌握其定义式物理意义,以及定义式中各个参数的意义。,10,第三章 非稳态导热,3-2 集总参数法的简化分析,1 定义:,忽略物体内部导热热阻、认为物体温度均匀一致的,分析方法。此时,温度分布只与时间有,关,即 ,与空间位置无关,因此,也称为,零维,问题。,2 温度分布,如图所示,任意形状的物体,参数均为已知。,将其突然置于温度恒为 的流体中。,11,第三章 非稳态导热,当物体被冷却时(,t,t,),由能量守恒可知,方程式改写为:,,则有,初始条件,控制方程,12,第三章 非稳态导热,积分,过余温度比,其中的指数:,13,第三章 非稳态导热,是,傅立叶数,物体中的温度呈指数分布,方程中指数的量纲:,14,第三章 非稳态导热,即与 的量纲相同,当 时,则,此时,,上式表明:当传热时间等于 时,物体的过,余温度已经达到了初始过余温度的36.8。,称 为时间常数,用 表示。,15,第三章 非稳态导热,应用集总参数法时,物体过余温度的变化曲线,16,第三章 非稳态导热,如果导热体的热容量(,Vc,)小、换热条件好(,h,大),那么单位时间所传递的热量大、导热体的温度变化快,时间常数(,Vc,/,hA,)小。,对于测温的热电偶节点,时间常数越小、说明热电偶对流体温度变化的响应越快。这是测温技术所需要的,(微细热电偶、薄膜热电阻),工程上认为,=4,Vc,/,hA,时,导热体已达到热平衡状态,17,第三章 非稳态导热,3 瞬态热流量:,导热体在时间 0,内传给流体的总热量:,当物体被加热时(,t0.2,时,取其级数首项即可,先画,32,第三章 非稳态导热,(2)再根据公式(3-23),绘制其线算图,(3)于是,平板中任一点的温度为,同理,非稳态换热过程所交换的热量也可以利用(324)和(325)绘制出。,解的应用范围,书中的诺谟图及拟合函数仅适用恒温介质的第三类边界条件或第一类边界条件的加热及冷却过程,并且,F00.2,33,第三章 非稳态导热,3-4 二维及三维问题的求解,考察一无限长方柱体(其截面为 的长方形,),34,第三章 非稳态导热,利用以下两组方程便可证明,即证明了 是无限长方柱体导热微分方程的解,这样便可用一维无限大平壁公式、诺谟图或拟合函数求解二维导热问题,其中,其中,及,35,第三章 非稳态导热,36,第三章 非稳态导热,限制条件:,(1)一侧绝热,另一侧三类,(2)两侧均为一类,(3)初始温度分布必须为常数,37,第三章 非稳态导热,3-5 半无限大的物体,半无限大物体的概念,引入过余温度,问题的解为,误差函数 无量纲变量,38,第三章 非稳态导热,误差函数:,令,说明:(1)无量纲温度仅与无量纲坐标,有关,(2)一旦物体表面发生了一个热扰动,无论经历多么短的,时间无论x有多么大,该处总能感受到温度的化。,?,(3),但解释Fo,a 时,仍说热量是以一定速度传播的,这,是因为,当温度变化很小时,我们就认为没有变化。,无量纲坐标,39,第三章 非稳态导热,令 若 即 可认为该处温度没有变化,40,第三章 非稳态导热,几何位置,若,对一原为,2,的平板,若,即可作为半无限大物体来处理,时间,若,对于有限大的实际物体,半无限大物体的概,念只适用于物体的非稳态导热的初始阶段,,那在惰性时间以内,两个重要参数:,41,第三章 非稳态导热,即任一点的热流通量:,令 即得边界面上的热流通量,0,内累计传热量,吸热系数,42,第三章 非稳态导热,思考题:,非稳态导热的分类及各类型的特点。,Bi 准则数,Fo准则数的定义及物理意义。,Bi,0,和Bi,各代表什么样的换热条件?,集总参数法的物理意义及应用条件。,使用集总参数法,物体内部温度变化及换热量的计算方,法。时间常数的定义及物理意义.,非稳态导热的正规状况阶段的物理意义及数学计算上的特,点。,非稳态导热的正规状况阶段的判断条件。,无限大平板和半无限大平板的物理概念。半无限大平板的,概念如何应用在实际工程问题中。,43,第三章 非稳态导热,如何用查图法计算无限大平板非稳态导热正规状况,阶段的换热问题?,如何用近似拟合公式法计算无限大平板非稳态导热,问题?,10半无限大平板非稳态导热的计算方法。,44,第三章 非稳态导热,作业:,3-2,3-5,3-12,3-16,3-21,3-24,,3-32,3-42,3-48,3-54,3-59,45,第三章 非稳态导热,
展开阅读全文