资源描述
,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,Chapter 7,Techniques of Integration,LHospital Rule,and Improper Integrals,Chapter 7,1,7.1 Basic Integration Formulas,7.1 Basic Integration Formulas,2,Table of Indefinite integrals,(,C,is a constant),Table of Indefinite integrals,3,or,or,oror,4,微积分英文ppt课件-3,5,Exercise:,Exercise:,6,Exercise:,Exercise:,7,7.2 Integration by Parts,7.2 Integration by Parts,8,Integration by Parts,If and are differentiable functions ,then,Integration by PartsIf a,9,The formula for integration by parts,Then the formula for integration by parts becomes,The formula for integration by,10,Example 1,Solution,Example 1Solution,11,Example 2,Solution,Example 2Solution,12,Example 3,Solution,Example 3Solution,13,Example 4,Solution,Example 4Solution,14,Example5,Example5,15,Example6,Example6,16,Example 7,Example 7,17,Example 8,Example 8,18,Example9,so,Example9so,19,or,so,orso,20,Integration by parts can also be usd in connection,With definite integrals,the formula is,or,Integration by parts can also,21,Exampe,Example,ExampeExample,22,Example,so,Thus,ExamplesoThus,23,Example,Prove the reduction,Where n2 is integer,Proof,Example Prove the reductionWh,24,微积分英文ppt课件-3,25,
展开阅读全文