资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,授课人:邯郸一中 刘 洁,授课人:邯郸一中 刘 洁,1,一、复合场,复合场是指_、_和重力场并存,或其中某两场并存,或分区域存在。,二、带电粒子在复合场中的运动分类,1.静止或匀速直线运动,当带电粒子在复合场中所受合外力_时,将处于静止状态或做匀速直线运动。,2.匀速圆周运动,当带电粒子所受的_与_大小相等,方向相反时,带电粒子在_的作用下,在垂直于匀强磁场的平面内做匀速圆周运动。,3.较复杂的曲线运动,当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做_(匀、非匀)变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线。,4.分阶段运动,带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成。,电场,磁场,为零,重力,电场力,洛伦兹力,非匀,重点:带电粒子在交变电磁场中的运动,电场磁场为零重力电场力洛伦兹力非匀 重点:带电粒子在交变,2,图11-4,图11-5,2010年高考安徽理综如图11-4所示,宽度为,d,的竖直狭长区域内(边界为,L,1,、,L,2,),存在垂直纸面向里的匀强磁场和竖直方向的周期性变化的电场(如图11-5所示),电场强度的大小为,E,0,,,E,0表示电场方向竖直向上。,t,=0时,一带正电、质量为,m,的微粒从左边界上的,N,1,点以水平速度,v,射入该区域,,Q,为线段,N,1,N,2,的中点,重力加速度为,g,。上述,d,、,E,0,、,m,、,v,、,g,为已知量。,(1)求微粒所带电荷量,q,和磁感应强度,B,的大小;,(2)求电场变化的周期,T,;,(3)改变宽度,d,,使微粒仍能按上述运动过程通过相应宽度的区域,求,T,的最小值。,沿直线运动到,Q,点后,做一次完整的圆周运动,再沿直线运动到右边界上的,N,2,点。,沿直线运动到,Q,点后,做一次完整的圆周运动,再沿直线运动到右边界上的,N,2,点。,例1:,图11-4图11-52010年高考安徽理综如图11-4所,3,Who,Where Why,What,How,1.研究对象是谁?,2.它在哪受什么力?,3.它在做什么运动?,4.怎样表述?,(1),mg,/,E,0,2,E,0,/,v,(2),d,/(2,v,)+,v,/,g,拓展:,请画出速率随时间的变化图像,WhoWhere WhyWhat How1.研究对象是,4,(3)改变宽度,d,,使微粒仍能按上述运动过程通过相应宽度的区域,求,T,的最小值。,点评:由于带电粒子在复合场中受力情况复杂,运动情况多变,往往出现临界、最值、极值问题,我们要做到根据临界条件列出辅助方程,再与其他方程联立求解。,(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,5,【例2】两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图11-3甲、乙所示(规定垂直纸面向里为磁感应强度的正方向)。在,t,=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。若电场强度,E,0,、磁感应强度,B,0,、粒子的比荷,q,/,m,均已知,且,t,0,=2,m,/(,qB,0,),两板间距,h,=10,2,mE,0,/(,qB,2,0,)。,(1)求粒子在0,t,0,时间内的位移大小与极板间距,h,的比值。,(2)求粒子在极板间做圆周运动的最大半径(用,h,表示)。,(3)若极板间电场强度,E,随时间的变化仍如图甲所示,磁场的变化改为如图丙所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。,自主解答:(1)设粒子在0,t,0,时间内运动的位移大小为,s,1,s,1,=1/2,at,2,0,由牛顿第二定律得,a,=,qE,0,/,m,又已知,t,0,=2,m,/(,qB,0,),h,=(10,2,mE,0,)/(,qB,2,0,),联立上式解得s,1,/h=1/5。,(2)粒子在,t,0,2,t,0,时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。设其运动速度大小为,v,1,,轨道半径为,R,1,,周期为,T,,则,Where Why,Who,What,How,1.研究对象是谁?,2.它在哪受什么力?,3.它在做什么运动?,4.怎样表述?,【例2】两块足够大的平行金属极板水平放置,极板间加有空间分布,6,授课人邯郸一中汇总ppt课件,7,v,1,=,at,0,由洛伦兹力提供向心力得,qv,1,B,0,=,mv,2,1,/,R,1,联立式得,R,1,=,h,/(5,),又,T,=2,m,/(,qB,0,),即粒子在,t,0,2,t,0,时间内恰好完成一个周期的圆周运动。在2,t,0,3,t,0,时间内,粒子在做初速度为,v,1,的匀加速直线运动,设位移大小为,s,2,s,2,=,v,1,t,0,+1/2,at,2,0,解得,s,2,=3/5,h,由于,s,1,+,s,2,h,,所以粒子在3,t,04,t,0时间内继续做匀速圆周运动,设速度大小为,v,2,,半径为,R,2,v,2,=,v,1,+,at,0,qv,2,B,0,=,mv,2,2,/,R,2,解得,R,2,=2,h,/(5,),由于,s,1,+,s,2,+,R,2,h,,粒子恰好又完成一个周期的圆周运动。在4,t,05,t,0时间内,粒子运动到正极板(如图甲所示)。因此粒子运动的最大半径,R,2,=2,h,/(5,)。,(3)粒子在板间运动的轨迹如图乙所示。,答案:(1),1/5,(2)2,h,/(5,),(3)如图,点评:(1)带电粒子在磁场中的周期性运动一般有两种情况:一种是磁场的强弱或方向做周期性变化引起;一种是其他外界约束下的往复运动。无论是哪种情况,能否根据题意画出可能的运动情况是进一步求解的前题和基础。,(2)周期性运动的物体在模型上常具有“对称性”,结果常具有“多样性”,这都须引起注意。,v1=at0答案:(1)1/5点评:(1)带电粒子在磁场中,8,授课人邯郸一中汇总ppt课件,9,2010年高考山东理综如图11-2所示,以两虚线为界,中间存在平行纸面且与边界垂直的水平电场,宽度为,d,,两侧为相同的匀强磁场,方向垂直纸面向里。一质量为,m,、带电荷量+,q,、重力不计的带电粒子,以初速度,v,1,垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求:,(1)粒子第一次经过电场的过程中电场力所做的功,W,1,;,(2)粒子第,n,次经过电场时电场强度的大小,E,n,;,(3)粒子第,n,次经过电场所用的时间,t,n,;,(4)假设粒子在磁场中运动时,电场区域电场强度为零。,请画出从粒子第一次射入磁场至第三次离开电场的过程中,电,场强度随时间变化的关系图线(不要求写出推导过程,不要求,标明坐标刻度值)。,图11-2,(1)3/2,mv,2,1,(2)(2,n,+1),mv,2,1,/(2,qd,)(3)2,d,/(2,n,+1),v,1,)(4)见解析图,课后训练:,2010年高考山东理综如图11-2所示,以两虚线为界,中,10,匀变速直线运动(合外力为,),匀速直线运动(合外力为,),质谱仪,磁流体发电机,回旋加速器,电磁流量计,霍尔效应,速度选择器:,直线运动,动量、能量守恒,功能关系,匀速圆周运动,带电粒子在复合场中的运动,实际应用,条件:mg=,公式:Bqv=,一般曲线运动,匀变速直线运动(合外力为 )匀速直线运动(合,11,带电粒子在复合场中运动的处理方法,(1)正确分析带电粒子动力学特征是解决问题的前提,(2)灵活选用力学规律是解决问题的关键,带电粒子在复合场中运动的处理方法(2)灵活选用力学规律是解决,12,谢谢指导!,谢谢指导!,13,已知:质量为m、电量为q的可视为质点的带正电的小球,以大小为V,0,的速度垂直于竖直面MN向右作直线运动。小球在t=0时刻通过电场中的P点,为使小球能在以后的运动中竖直向下通过D点,求:,(1)场强E的大小;,(2)如果磁感应强度B,0,为已知量,试推出满足条件t,1,的表达式;,(3)进一步的研究表明,竖直向下的通过D点的小球将做周期性运动。则当小球运动的周期最大时,求出磁感应强度B,0,及运动的最大周期T的大小,并在图中定性画出小球运动一个周期的轨迹(只需要画出一种可能的情况),【针对训练】,已知:质量为m、电量为q的可视为质点的带正电的小球,以大小为,14,
展开阅读全文