资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,1.5,图形的平移,明天的成功源自今天的积累,问题,:,在滑梯过程中,小朋友身体各部分的运动方向相同吗?运动距离呢?,动手实验,学生两人一组实验:一人把书本(或文具盒)以一定斜度固定,另一人把一块三角板放在斜板上,让其自然下滑,观察其滑动过程;然后换一直尺或其他可滑动的物品再试一次,.,议一议,三角板在下滑过程中各顶点的运动方向、运动距离如何变化?三角板下滑动过程中,其形状、大小、方向如何变化?对应边有何特征?,概念:由一个图形改变为另一图形,在改,变的过程中,原图形上所有的点都沿同一方向运动,且运动相等的距离,这样的图形改变叫做图形的平移(平移),下面两个图形的变换各是什么变换?,请说明理由。,(2),“,小小竹排水中游,巍巍青山两岸走,”,,,所蕴涵的图形变换是,_,变换,?,例:把长方形,ABCD,(如图)沿箭头所指的方向平移,使点,C,落在点,C,。求经这一平移变换后所得的像。,A,D,B,C,C,B,D,A,练习:如图,经过平移,线段的端点,A,移到了端点,D,,你能做出线段,AB,平移后的图形吗?,A,B,D,例:把长方形,ABCD,(如图)沿箭头所指的方向平移,使点,C,落在点,C,。求经这一平移变换后所得的像。,A,D,B,C,A,D,B,C,如图所示,是小李家电视机的背景墙面上的装饰板,它是一块底色为蓝色的正方形板,边长,18cm,上面横竖各两道红条进行装饰,红条宽都是,2cm,,问蓝色部分板面面积是多少?,广告公司的图案设计,课课清,(,1,)认识平移变换,(,2,)理解和掌握平移变换的性质。,(,3,)会作出某图形经平移变换后的像,(,利用尺规作图,),(,4,)不论是作图还是描述一个平移变换都需要知道两个要素:平移的方向和移动的距离。,布置作业,1,、作业册,2,、,教与学(一)和第,42,页第,11,、,12,题,牢记责任,幸福承担胸怀目标,快乐前进,方程小史,“,方程,”,一词来源于我国古算书,九章算术,.,在这部著作中,已经会列一元一次方程,.,宋元时期,中国数学家创立了,“,天元术,”,,用天元表示未知数进而建立方程,.,这种方法的代表作是数学家李冶写的,测圆海镜,书中所说的,“,立天元一,”,相当于现在的,“,设未知数,x,”,.,清代数学家李善兰翻译外国数学著作时,开始将,equation,一词译为,“,方程,”,,至今一直这样沿用,.,在小学我们已经学过,方程是指含有未知数的等式,.,运用已学的知识,根据下列问题中的条件,分别列出方程:,2,、物体在水下,水深每增加米承受的压力就会增加,1,个大气压,.,当,“,蛟龙,”,号下潜至,3500,米时,它承受的压力约为,340,个大气压,.,问当它承受压力增加到,500,个大气压时,它又继续下潜了多少米?,设它又继续下潜了,x,米,可列出方程,_,设第一次射击的成绩为,x,个,,可列方程为,_,3,、,小强、小杰、张明参加投篮比赛,每人投,20,次,.,小强投进,10,个球,小杰比张明多投进,2,个,三人平均每人投进,14,个球,.,问小杰和小明各投进多少个,1,、一件衣服按,8,折销售的售价为,72,元,这件衣服的原价是多少元,?,设这件衣服的原价为,x,元,可列出方程,_;,合作学习:,观察你所列的方程,这些方程之间有什么共同的特点?,议一议,方程两边都是整式;,方程中只含有一个未知数;,未知数的指数是一次。,方程的两边都是整式,,,只含有一个未知数,,并且,未知数的指数是一次,,这样的方程叫做。,一元一次方程,判断下列各式哪些是一元一次方程?,你能写出一个一元一次方程吗?,x,x,(1)5x=0,(2)y,2,=4+y,(3)3m+2=1-m,(4)1+3x,(5),做一做,x,关于方程的解:,3,、,小强、小杰、张明参加投篮比赛,每人投,20,次,.,小强投进,10,个球,小杰比张明多投进,2,个,三人平均每人投进,14,个球,.,问小杰和小明各投进多少个,设第一次射击的成绩为,x,个,,可列方程为,_,列出方程后,还必须找出符合方程的未知数的值,能使方程左右两边的值,相等的,未知数的值叫方程的解,.,判断下列,t,的值是不是,方程,2t+1=7-t,的解:,(,1,),t=-2,(,2,),t,1,(3)t=2,例,:,你知道吗?,关于方程的解:,你们知道合作学习中方程 的解吗?,3,、,小强、小杰、张明参加投篮比赛,每人投,20,次,.,小强投进,10,个球,小杰比张明多投进,2,个,三人平均每人投进,14,个球,.,问小杰和小明各投进多少个,设第一次射击的成绩为,x,个,,可列方程为,_,列出方程后,还必须找出符合方程的未知数的值,能使方程左右两边的值,相等的,未知数的值叫方程的解,.,18,17,16,15,14,13,x,(1),确定,x,的取值范围,_,所以只能取,_,13x18,且,x,取正整数,13,14,15,16,17,18,14,(2),把所取的的值代入方程左边的代数式,求出代数式的值,如下表:,由上表知,当,x,15,时,所以,x=15,就是一元一次方程 的解,尝试检验法,解方程,:,3,、,小强、小杰、张明参加投篮比赛,每人投,20,次,.,小强投进,10,个球,小杰比张明多投进,2,个,三人平均每人投进,14,个球,.,问小杰和小明各投进多少个,设第一次射击的成绩为,x,个,,可列方程为,_,对于一些较简单的方程,可以确定未知数的一个较小的取值范围,逐一将这些可取的值代入方程,进行尝试检验,.,能使方程左右两边相等的未知数的值就是方程的解,.,这种,尝试检验的方法,是解决问题的一种重要的方法,.,小结,一元一,次方程,概念,如何列方程,?,一元一次方程,先,估计范围,再,代入检验,方程,尝试检验法,同一个量用两种不同的代数式表示,一元,;,一次,;,整式,华氏,(),摄氏,(),温度描述,212,水沸腾的温度,37,人体温度,68,室温,0,水结冰的温度,100,20,32,课内练习:,有的温度计有华氏、摄氏两种温标,华氏,(),、摄氏,(),温标的转换公式是,F=1.8C+32,。请填下表:,1.,下列方程是一元一次方程的是,_,(2),,,(3),,,(5),2.,若 是关于 的方程的解,则,3m-n,的值为,-4,是一元一次方程,则,k=_,变式,1:,是一元一次方程,则,k=_,2,1,或,-1,变式,3,:方程,(k+6)x,2,+3x-8=7,是关于,x,的一元一次方程,则,k=_,。,-6,变式,2:,是一元一次方程,则,k=_,拓展提高:,
展开阅读全文