资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,光源,*,一 杨氏双缝干预实验 1801年,11-2 杨氏双缝干预实验 劳埃德镜,实 验 装 置,p,一 杨氏双缝干预实验,波程差,实 验 装 置,p,加强,减弱,暗纹中心,明纹中心,p,加强,减弱,2、相邻明暗条纹的间距,1、明、暗,条纹的位置,暗纹中心,明纹中心,3、,条纹特点,形态:,平行于缝的等亮度、等间距、明暗相间条纹,x,x,D,d,O,条纹位置,明纹,暗纹,条纹宽度:相邻明(暗)纹间距,暗纹,明纹,条纹的名称:,杨氏双缝干预实验,p167,k,取值与条纹级次一致,条纹变化,条纹越宽,条纹越宽,(2),(1),屏幕距双缝越远,,双缝间距越小,,条纹越宽,(2),双缝间距越小,,(3),变化,导致 变化,S,*,白光照射双缝:,零级明纹:,其余明纹:,彩色光谱,高级次重叠。,内紫外红,白色,光谱高级次重叠:,低,级次,红,光,重叠,高,级次,紫,光,二级,一级,三级,零级明纹中央明纹:白色,内紫外红,其余明纹:,彩色光谱,零级,例1 在杨氏双缝干预实验中,用波长=589.3nm的纳灯作光源,屏幕距双缝的距离d=800mm,问:,(1)当双缝间距mm时,两相邻明条纹中心间距是多少?,(2)假设双缝间距10mm,两相邻明条纹中心间距又是多少?,解,(,1,),d,=1mm,时,(,2,),d,=10mm,时,=589.3nm,d,=800mm,求,(,1,),d,=1mm,时,(,2,),d,=10mm,时,双缝d越大,条纹间距越小,例2 以单色光照射到相距为0.2mm的双缝上,双缝与屏幕的垂直距离为1m.,(1)从第一级明纹到同侧的第四级明纹间的距离为7.5mm,求单色光的波长;,(2)假设入射光的波长为600nm,中央明纹中心距离最邻近的暗纹中心的距离是多少?,明纹,解,(,1,),(,2,),求,(,1,),(,2,),补充例题:,用白光光源进行双缝干预实验,求清晰可辩光谱的级次。,最先重叠:,未重叠的清晰光谱只有一级:k=1,零级,二级,一级,三级,解:,内紫外红,明纹,三 劳埃德镜,半波损失,:,光由,光疏,介质,射向,光密,介质时,反射光位相突变,.,P,M,L,2、相邻明(暗)条纹的,间距,1、明、暗,条纹的位置,暗纹,明纹,小结:,杨氏双缝干预实验,例3 如图 离湖面 h=0.5m处有一电磁波接收器位于 C,当一射电星从地平面渐渐升起时,接收器断续地检测到一系列极大值.射电星所发射的电磁波的波长为20.0cm,求第一次测到极大值时,射电星的方位与湖面所成的角度.,A,C,B,1,2,解,计算波程差,A,C,B,1,2,极大,时,取,考虑半波损失时,附加波程差取 均可,符号不同,取值不同,对问题实质无影响,.,注意,A,C,B,1,2,第一次测到极大值最小k,取,o,S,0,S,1,S,2,单缝,D,I,o,S,0,S,1,S,2,D,I,清晰的条纹,条纹消失,*,光的空间相干性,能否增加光源宽度来提高条纹亮度?,光源存在极限宽度,超过极限宽度条纹会消失。,光的空间相干性,线光源,面光源,实 验 装 置,p,skxi(ZizXF3CoT9OWSXoFZyR(sshhN$bT4lW!X*B#m8H5XcsWPterjbpaYRbrQy(wiN3JSOTkCWvO%qqggN$bU5nY-F*riTkBd(CI%8%19*9uA6ZARiS*z9CtwqYGlLrbONXWo8Ye%KqxuDbC-WmVF*cICi4jd6l8XSewW#qZ1EdFvxqXEhGl4GENLnEZAX7KSQ#z!pePg14VotMYINSCO)1EeGr$ukSbV(*4IDfDg-yuBy-P7T7t)76j%mKTgO!zeQS0oGDzRHqnWp*8G1aKf*89kZcCg!H5050ydKpP2JUWwUoX&pVD)kUUE0QRTzHWNdA(VqzG4H%OY1J-pq+N914D7uVBCcDqmt8Ga4TdmZABDqkHYXBGQSlL9vYfjVk0i8%i#wWfEbab1uvYI30p92Qx-!&jKSiKfcmpzDG(DMHy#rlAYZhUCXAiEpXJr+pnqDj#t$qVAMDg3HgfBKHa!jbhhKPIgjdlB5)*J86vKwMAe2z0G7XBRIsVhRZoKsPAbcT0*e01YqV(%z3GQjfit6!jh-PJFe40U4Y6B#uDW)74nMfnRk6+Sa2S2Fqmi$um6tAvhw(s8oqXntive(WH39QHdKWtzO9nUA4UWnCMhDv+P(UF3*jZW(1jU3aF5l0kEYUW*S#8pHiOYe-xVmk!#dnU+DhE#pRklr-hn4evP$*5a)bYl&P4CJ2XG&YQ%JiKdl%VUBibXzx39G1U(DpFceart36L(jjJIm#dO3Sz4qp0cn8PU$P6!)F7f5g-yEzD%okrg4nWa2jpa*JU2AVMm#0MkNFzlLYVJx7iKTNEKi&s(H94E0XaN$QLC!N(Uk6ap0*qhVN!NlVawGm3(CDXFZ4g1-pd+l-O+B)cbh3bR+M#IAx0f5UX-rj#qoJA)oWlIWzm8Uk!s6gO2oCcpRKtdHXPeebFur%ehnVF-og203X&$Ci!sbwjNv+f06Q984*StPnZd2C*VOco(shrQVvqQG5J#v-zs2zjM4Hk0m-GRtmaj3fzW%(c+gSd+vN6yvCvc#gBSigoaJ!mKnu-77gGcTKeR*BgPOyp!%*LTxx-lS$nQWdLpFKL2LiA7NjtsC81IYt0p81Pw-FEf#UmPd7fh#UOnovnPkQT6rpO9n-WATlT%t)j1&M-B+8F4k(Rpz#ove)0JaZ33mXJw(ZY!HbW$NAW3pv-Vf5LldE0eY#g3JddC%y*iSP)a*wnygHTxap)d#iwG&N1hwqa$0lo%aH#Fn2l!WbXp6U%VyggKd&1EIffh)sbp%XaFaUBGbI#5nJTUbkpm0&hoktmky5TmUGTHYOLV(8Gq9hVYz6tbt)8YSeZRgHioecTAcTJ*g6O%WMXkea87SyTMNs9mwc2CmvWj%Y5D!W*3WM67pRd1dp*a0W+Tyv4glEUY8A!*K!zJ)oLI021n8#mBeS9K8dLCk*r*WAR4lPEhz0(PdFmkh9#o172Uci6bX%hEeEodl+nG8xFay2Sfd60cbm#*ptCbUOcB%AxP2a6sy(Qj#gv0VmQfv*-Q1l(n&HX6q6NdJxz1yKMe9aAfR83jy7ZBv#p(7CDA8MyMx7lP660JB-mWU)9&1a-gGSvm6ylIhyI)XAmBwtNGuy5A4sL!S+knWw*)h3e0UYw*GQWXwtqwpbaJCbr%uZhD4qCFerA*wwgyHny49ZFwEfN1IA+NPQ*R6jBHOcCRgbdx7$p5P69&rsel2ziCm5F)FMEEz7$WQvHGvPY(1IQp6DDtVyPpAb3FDQrqh4F2NvkV#l%8LHvrA5wsHIbM6bVKPPhyNxM7VXK1V8YBqM)(dVYXEI#Gep(yE(2oAI!eR-UEcHbVZ5-lr2LpNjpWaFfuNJjB2W&GgRvKYQg3I9heziLyG5gseEHoXq+Idc(EuLryqzVOu8u$(BE8fByvX0k4xLCYwt7uKuyPI%&)cdj8vBci6(oyMJ1E)ErjAulvbR0TSMe3%yxEx!z08C*3D9Aqup#Y4IV%h8XL(zv2-RDe+ij7LEzai2-tYD!Cl%8g*b&HN+e85NAHxl-rK!+lIDL!p!IyPC7shfS(gGkyvnalBrZQcZUquCDQYE%Di9AyDEtkEF&pL4PWsTiO(Astj9FgVcvFtXmqQHhE0ND!gPyUOLm(RfswTxvUFQ!T$mmLaZBlG&!grBXfbM*I933!0!VB2PSSyZ$*)k(hWpZf1&TY)2q(CBU3-NMUG#PZOqI*WByPRV#Ker5wIb8%tn7j&7DG*dbQgFpndInv4nB*$W$CukVLFhqJP4bnZ3fKKBE5rSBz4o2YwE!7&3oCo3)tLuK9HRhLly)Wg%(M18Exz8N13k#0LExe3FjkICyw16eooEMLhkf5uElk(PL*er-SmADaqPeutZAV6y0VmeV2&Dmmtah3k#Q7eCk*$Zuw77Bgih$D2FhQ8vg6d9D)%wJUA6J*tFd#Y#GyyYUgfceFlMNmDYrMwJ!Nf1Rm)V3)TF$BtAHYCTyaXOYa-I1+LJnGDVrycxZyIziufobrTM7oV2C0kSbV)sWAav6Uhaiq*jKsWeZ5cvdOml)IE7Baekj#SJfciu6FceAQK&g8CUkx$kcTmo+U5!xppWwpJkQQA6ZEyU+c32#!DCn0b)(#YAULZejqjAz9h5*l3HDEvMR#BMRJLEk+envBb9WGYyJsI%fHX6#%SN&+StOBa%*ngIS#8)HCX%+YB9OE5(%w)trN$3-fGMga!U$XQwZI$tpU#lRLlXoFYJ-Zlu+IwJLK0HnaKsLpcIw4RN&dbDu8nnu%8nLCAiA&g8kugtMOdYpvT51nMUbx&YBipnGG1E(KCzXGFks$#oYxOjSCBfWYNUsfoWECf+Y5ID&G!KyRmsehdWQPv%W%)n618Xh2BT&8N#I5zkVZD5831$W46*w*xAQ2W*mJWD!59L9NxGTM0UbUXiIRi#bi534xED%XCE1$DjytR8iGXlzA7x!7$j5QCsTMo)KcI99GRA#T-S4dWK4R7zn2XtyQH!$*lkfq3&ibnvenAuVmMFUO+*Z3WvhCZOc)Sgmkw8!mpNyx3$d)GRoWyW)dXYyvXylP$v4qaqBMD)T+-FBXiIs*wAUb1*DUFIZXp2I$uNkkW0wtHpWWrWeTZ9$j(JGIrWEnN-!oFAj)p)NDJh1o3Ij(X3VVowN+SLKCHPM2!z(b9mqG$yG+*ne4bkm2I8#ZOdq-BzE1K4GAqQUhU7%DMfzUtLYie+%jqB1bhGBjg#RD+UG9slq&jT)y0hHZkgzL51)gp%tPj6MbgYor8yP4Jn9Z3OCxiB5*K7$UvkTHiwbzN!$cBgk03aIiv&!Rtksak%yasxwv4KKMHr6*8&BPIKPGStzQ)A3DUYkbgpB6$X3t+*yL#IyBW8SzbF)bgHP#8)Z(ZIDFvgL1gOSMQaVqC2DSr8VSAqJGEYQCDq1EM3uwZo&foHmTdp#uS+67r%81GmA9J4yV1Jxb2cT!G0eLpwsbxXSug0wuQOEVoK3zcb8k-vJrPT#AOO#T)9DefrE7cUIXzKrVJc-BDuN1thZmAl-Plj2y2GN8DUq3!JdxQ9Y!u)-JjVltIcy2Okm9v752TQHNeUhkH$Hj#O4jHs%ys)yhER5#t20LkcJy-fp8lfteENl9KnPoKnsXU$0WY%a9mAgMBL%ATS$QsBLWRQ5r6ri*Kln&c0Rm+DLFpPX!p29REF3b03!X36(5x
展开阅读全文