Section179179节

上传人:ra****d 文档编号:252474791 上传时间:2024-11-16 格式:PPT 页数:9 大小:33.50KB
返回 下载 相关 举报
Section179179节_第1页
第1页 / 共9页
Section179179节_第2页
第2页 / 共9页
Section179179节_第3页
第3页 / 共9页
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Section 17.9,The Divergence Theorem,SIMPLE SOLID REGIONS,A region,E,is called a,simple solid region,if it is simultaneously of types 1,2,and 3.(For example,regions bounded by ellipsoids or rectangular boxes are simple solid regions.)Note that the boundary of,E,is a closed surface.We use the convention that the positive orientation is outward,that is,the unit normal vector,n,is direction outward from,E,.,THE DIVERGENCE THEOREM,Let,E,be a simple solid region and let,S,be the boundary surface of,E,given with positive(outward)orientation.Let,F,be a vector field whose component functions have continuous partial derivatives on a open region that contains,E,.Then,NOTE,:The theorem is sometimes referred to as,Gausss Theorem,or,Gausss Divergence Theorem,.,EXAMPLES,1.Let,E,be the solid region bounded by the coordinate planes and the plane 2,x,+2,y,+,z,=6,and let,F,=,x,i,+,y,2,j,+,z,k,.Find,where,S,is the surface of,E,.,2.Let,E,be the solid region between the paraboloid,z,=4,x,2,y,2,and the,xy,-plane.Verify the Divergence Theorem for,F,(,x,y,z,)=2,z,i,+,x,j,+,y,2,k,.,EXAMPLES(CONTINUED),3.Let,E,be the solid bounded by the cylinder,x,2,+,y,2,=4,the plane,x,+,z,=6,and the,xy,-plane,and let,n,be the outer unit normal to the boundary,S,of,E,.If,F,(,x,y,z,)=(,x,2,+sin,z,),i,+(,xy,+cos,z,),j,+,e,y,k,find the flux of,F,across,E.,AN EXTENSION,The Divergence Theorem also holds for a solid with holes,like a Swiss cheese,provided we always require,n,to point away from the interior of the solid.,Example,:Compute,if,F,(,x,y,z,)=2,z,i,+,x,j,+,z,2,k,and,S,is the boundary,E,is the solid cylindrical shell,1,x,2,+,y,2,4,0,z,2.,FLUID FLOW,Let,v,(,x,y,z,)be the velocity field of a fluid with constant density,.Then,F,=,v,is the rate of flow per unit area.If,P,0,(,x,0,y,0,z,0,)is a point in the fluid flow and,B,a,is a ball(sphere)with center,P,0,and very small radius,a,then div,F,(,P,)div,F,(,P,0,)for all point,P,in,B,a,since div,F,is continuous.,FLUID FLOW(CONTINUED),We approximate the flux over the boundary sphere,S,a,as follows:,FLUID FLOW(CONCLUDED),The approximation becomes better as,a,0 and suggests that,This equation says that div,F,(,P,0,)is the net rate of outward flux per unit volume at,P,0,.This is the reason for the name,divergence,.If div,F,0,the net flow is outward near,P,and,P,is called a,source,.If div,F,0,the net flow is inward near,P,and,P,is called a,sink,.,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!