资源描述
,章 末 归 纳 整 合,知识网络,1,数列的分类,要点归纳,数列名称,分类条件,有穷数列,无穷数列,以数列的项数有限无限为根据来分,递增数列,递减数列,恒有,a,n,a,n,1,(,n,N,),常数列,恒有,a,n,a,n,1,(,n,N,),摆动数列,有时,a,n,a,n,1,,有时,a,n,0,且,b,1,,,b,,,r,均为常数,),的图象上,(1),求,r,的值;,解,:,(1),由题意,,S,n,b,n,r,,当,n,2,时,,S,n,1,b,n,1,r,,,所以,a,n,S,n,S,n,1,b,n,1,(,b,1),,由于,b,0,且,b,1,,所以当,n,2,时,,a,n,是以,b,为公比的等比数列,,又,a,1,b,r,,,a,2,b,(,b,1),,,(2),由,(1),知,,n,N,*,,,a,n,(,b,1),b,n,1,,,当,b,2,时,,a,n,2,n,1,,,【,例,6】,等差数列,a,n,的各项均为正数,,a,1,3,,前,n,项和为,S,n,,,b,n,为等比数列,,b,1,1,,且,b,2,S,2,64,,,b,3,S,3,960.,(1),求,a,n,与,b,n,;,解,:设,a,n,的公差为,d,,,b,n,的公比为,q,,则,d,为正数,,a,n,3,(,n,1),d,,,b,n,q,n,1,,,故,a,n,3,2(,n,1),2,n,1,,,b,n,8,n,1,.,(2),S,n,3,5,(2,n,1),n,(,n,2),题型三数列应用题,解数列应用题的基本步骤:,解数列应用题的基本步骤:,1,与等差数列有关的实际应用题,【,例,7】,有,30,根水泥电线杆,要运往,1 000,米远的地方安装,在,1 000,米处放一根,以后每,50,米放一根,一辆汽车每次只能运三根,如果用一辆汽车完成这项任务,(,完成任务后回到原处,),,那么这辆汽车的行程共为多少千米?,解,:如图所示,,假定,30,根水泥电线杆存放在,M,处,则,a,1,MA,1 000,,,a,2,MB,1 050,,,a,3,MC,1 100,,,a,6,a,3,503,1 250,,,a,30,a,3,1509,,,由于一辆汽车每次只能装,3,根,故每运一次只能到,a,3,,,a,6,,,a,9,,,,,a,30,,这些地方,这样组成公差为,150,,首项为,1 100,的等差数列,令汽车的行程为,S,,,则,S,2(,a,3,a,6,a,30,),2(,a,3,a,3,1501,a,3,1509),即这辆汽车的行程为,35.5,千米,方法点评,:对于与等差数列有关的应用题要善于发现,“,等差,”,的信息,如,“,每一年比上一年多,(,少,)”“,一个比一个多,(,少,)”,等,此时可化归为等差数列,明确已知,a,1,,,a,n,,,n,,,d,,,S,n,中的哪几个量,求哪几个量,选择哪一个公式,2,与等比数列有关的实际应用题,【,例,8】,某人贷款,5,万元,分,5,年等额还清,贷款年利率为,5%,,按复利计算,每年需还款多少元?,(,精确到,1,元,),解,:设每年还款,x,万元,第一年偿还的,x,万元,还清贷款时升值为,x,(1,0.05),4,万元,第二年偿还的,x,万元,还清贷款时升值为,x,(1,0.05),3,万元,第三年偿还的,x,万元,还清贷款时升值为,x,(1,0.05),2,万元,第四年偿还的,x,万元,还清贷款时升值为,x,(1,0.05),万元,,第五年偿还的,x,万元,还清贷款时仍为,x,万元,于是,x,(1,0.05),4,x,(1,0.05),3,x,(1,0.05),2,x,(1,0,05),x,5(1,0.05),5,,,方法点评,:一般地,当出现下列信息时,可化归为等比数列:,(1),增长率;,(2),n,倍;,(3),几番;,(4),几分之几等,此时应明确,a,1,,,a,n,,,S,n,,,q,,,n,中的哪几个量,求哪几个量,一般是知三求二,
展开阅读全文