Understanding TCP Incast Throughput Collapse in Datacenter Networks

上传人:e****s 文档编号:243414571 上传时间:2024-09-22 格式:PPT 页数:28 大小:2.76MB
返回 下载 相关 举报
Understanding TCP Incast Throughput Collapse in Datacenter Networks_第1页
第1页 / 共28页
Understanding TCP Incast Throughput Collapse in Datacenter Networks_第2页
第2页 / 共28页
Understanding TCP Incast Throughput Collapse in Datacenter Networks_第3页
第3页 / 共28页
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,UNDERSTANDING TCP INCAST THROUGHPUT COLLAPSE IN DATACENTER NETWORKS,Presenter:,Aditya Agarwal,Tyler Maclean,1,MOTIVATION/IMPORTANCE,Internet datacenters support a myriad of service and applications.,Google, Microsoft, Yahoo, Amazon,Vast majority of datacenter use TCP for communication between nodes.,The unique workload, scale and environment of internet datacenter violate the WAN assumption on which TCP was originally designed.,RTO = 200ms (default value in Linux),2-3 order of magnitude greater than the RTT in the data center,2,WHAT IS THE PROBLEM,Incast communication pattern:,Try to understand TCP incast throughput collapse.,Prove this problem is general,An analytical model,Modifications to TCP and make sure that it works,client,server,switch,server,server,3,THE CONTRIBUTIONS,Reproduce the problem in our own experimental testbeds and demonstrate the generality of Incast.,Propose a quantitative model that accounts some of the observed Incast behavior.,Implement several intuitive modifications to the TCP stack in Linux, and prove that some modifications are more helpful than others.,4,ROADMAP,Experiment setting:,Workload,Experiment results:,Initial Finding,Deep analysis,Quantitative Models,Conclusions,5,WORKLOAD SETTING,Map Reduce like application:,Receiver requests k blocks of data from,S,storage servers.,Each block of data striped across S storage servers,Each server responses with a “,fixed,” amount of data. (,fixed-fragment workload,),Client wont request block k+1 until all the fragments of block k have been received.,Setting:,k=100,S = 1-48,fragment size : 256KB,6,DETER NETWORK SECURITY TESTBED,400 PCs, located at USC ISI and UC Berkeley,Supported operating systems include Linux, FreeBSD, Windows,7,INITIAL RESULTS,8,Different sender experience long , synchronized TCP retransmission timeout (RTO) events.,RTO =200ms (default value in WAN environment),9,MINOR AND INTUITIVE MODIFICATIONS,Decrease the minimum RTO timer from 200ms,Randomize the minimum RTO timer,Smaller multiplier for the RTO exponential back off,Randomize the multiplier for the RTO exponential back off.,10,INITIAL RESULTS,Smaller multiplier for the RTO exponential back off,Useless,Randomize the multiplier for the RTO exponential back off,Useless,There are only a tiny number of exponential back offs for the entire transfer,11,INITIAL RESULTS,Randomize the RTO timer,Useless, but also no penalty,Because the servers share the same switch, all subsequent switch buffer overflow events will be synchronized for all sender.?,12,ANALYSIS IN DEPTH,Different RTO Timers,Observations:,Initial goodput min occurs at the same number of servers.,Larger min RTO timer value, max goodput occurs at large number of senders.,Smaller RTO timer value has faster goodput “recovery” rate,The decrease rate after local max is the same between different min RTO settings.,13,DELAY ACKS AND HIGH RESOLUTION TIMERS,Improving methods proposed by 11,Turn off the delay ACKs function,(defaults delayed ACKs threshold is 40ms),Use high resolution Timer.,14,CONGESTION WINDOWS WITH/WITHOUT DELAY ACKS,15,SMOOTHED RTT WITH/WITHOUT DELAY ACKS,16,DIFFERENT WORKLOAD,17,SUB-OPTIMAL BEHAVIOR WITH REGARDS TO DELAYED ACKS IS WORKLOAD INDEPENDENT.,18,CANNOT MATCH THE RESULTS IN PREVIOUS WORK11,19,SMOOTHED RTT WITH/WITHOUT DELAY ACKS,20,QUANTITATIVE MODELS,Net good put:,D: total amount of data to be sent, 100 blocks of 256KB,L: total transfer time of the workload without and RTO events.,R: the number of RTO events during the transfer,S: number of server:,r: the value of the minimum RTO timer value,21,FIT THE CURVE OF THE NUMBER OF RTO EVENTS,22,EQUATION OF L,I is the inter-packet waiting time,23,HOW GOOD IS THEIR ANALYSIS MODEL?,24,FURTHER ANALYSIS ON R AND I,Number of RTO event is similar for different RTO values( 200ms and 1ms).,Interpkt waiting is vary different for different RTO value( 200ms and 1ms).,25,QUALITATIVE REFINEMENT FOR THEIR MODEL,As the number of sender increase, the number of RTO event per sender increases. Beyond a certain number of sender, the number of RTO event is constant.,When a network resource becomes saturated, it is saturated at the same time for all senders.,After a congestion event, the senders enter the TCP RTO state. The RTO timer expires at each sender with a uniform distribution in time and a constant delay after the congestion event.,T is increase as the number of sender increase, however, T is bounded.,26,MORE EXPLANATIONS,A smaller minimum RTO timer value means larger goodput values for the initial minimum.,The initial goodput minimum occurs at the same number of senders, regardless the value of the minimum RTO times.,The second order goodput peak occurs at a higher number of senders for a larger RTO timer value,The smaller the RTO timer values, the faster the rate of recovery between the goodput minimum and the second order goodput maximum.,After the second order goodput maximum, the slope of goodput decrease is the same for different RTO timer values.,27,CONCLUSIONS,Study the dynamic of Incast.,Propose a simple mathematical model to explain the observed trends,Account for the difference between their observation and that in previous work.,28,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!