应变式传感器工作原理、结构和应用课件

上传人:风*** 文档编号:241839467 上传时间:2024-07-29 格式:PPT 页数:80 大小:2.13MB
返回 下载 相关 举报
应变式传感器工作原理、结构和应用课件_第1页
第1页 / 共80页
应变式传感器工作原理、结构和应用课件_第2页
第2页 / 共80页
应变式传感器工作原理、结构和应用课件_第3页
第3页 / 共80页
点击查看更多>>
资源描述
应变式传感器工作原理、结构和应用应变式传感器 工作原理、结构和应用3.1 电阻应变片的工作原理3.2 电阻应变片的结构、材料及粘贴3.3 电阻应变片的特性3.4 电阻应变片的测量电路3.5 应变式传感器的应用3.1 电阻应变片的工作原理 3.1 电阻应变片的工作原理电阻应变片的工作原理3.1.1 金属电阻应变片的工作原理金属电阻应变片的工作原理金属电阻应变片的工作原理基于电阻应变效应。导体在外界作用下产生机械变形(拉伸或压缩)时,其电阻值相应发生变化,这种现象称为电阻应变效应。如图3-1所示,一根金属电阻丝,在其未受力时,原始电阻值为式中:电阻丝的电阻率;l电阻丝的长度;A电阻丝的截面积。(3-1)图3-1 金属电阻丝应变效应 3.1 电阻应变片的工作原理3.1.1 金属电阻当电阻丝受到拉力F作用时,将伸长l,横截面积相应减小A,电阻率因材料晶格发生变形等因素影响而变化,从而引起电阻变化R,通过对式(3-1)全微分,得电阻的相对变化量为 式中:dl/l长度相对变化量,用应变表示为(3-2)(3-3)当电阻丝受到拉力F作用时,将伸长l,横截面积相应减小dA/A圆形电阻丝的截面积相对变化量,设r为电阻丝的半径,微分后可得 由材料力学可知,在弹性范围内,金属丝受拉力时,沿轴向伸长,沿径向缩短,令dl/l=为金属电阻丝的轴向应变,为径向应变,那么轴向应变和径向应变的关系可表示为式中,为电阻丝材料的泊松比,负号表示应变方向相反。(3-5)(3-4)dA/A圆形电阻丝的截面积相对变化量,设r为电阻丝的将式(3-3)、式(3-5)代入式(3-2),可得或 通常把单位应变引起的电阻值变化称为电阻丝的灵敏系数。其物理意义是单位应变所引起的电阻相对变化量,其表达式为 (3-6)(3-7)(3-8)将式(3-3)、式(3-5)代入式(3-2),可得灵敏系数K受两个因素影响:一个是应变片受力后材料几何尺寸的变化,即1+2;另一个是应变片受力后材料的电阻率发生的变化,即(d/)/。对金属材料来说,电阻丝灵敏系数表达式中1+2的值要比(d/)/大得多,所以金属电阻丝的影响可忽略不计,即起主要作用的是应变效应。大量实验证明,在电阻丝拉伸极限内,电阻的相对变化与应变成正比,即K为常数。灵敏系数K受两个因素影响:一个是应变片受力后材料几何尺寸3.1.2 半导体电阻应变片的工作原理半导体电阻应变片的工作原理半导体电阻应变片是用半导体材料制成的,其工作原理基于半导体材料的压阻效应。半导体材料的电阻率随作用应力的变化而发生变化的现象称为压阻效应。当半导体应变片受轴向力作用时,其电阻相对变化为式中d/为半导体应变片的电阻率相对变化量,其值与半导体敏感元件在轴向所受的应变力有关,其关系为(3-9)(3-10)3.1.2 半导体电阻应变片的工作原理半导体电阻应变式中:半导体材料的压阻系数;半导体材料所受的应变力;E半导体材料的弹性模量;半导体材料的应变。将式(3-10)代入式(3-9)中得实验证明,E比1+2大上百倍,所以1+2可以忽略,因而引起半导体应变片电阻变化的主要因素是压阻效应,式(3-11)可以近似写成(3-11)(3-12)式中:半导体材料的压阻系数;半导体材料 半导体应变片的灵敏系数比金属丝式的高,但半导体材料的温度系数大,应变时非线性比较严重,使它的应用范围受到一定的限制。用应变片测量应变或应力时,根据上述特点,在外力作用下,被测对象产生应变(或应力)时,应变片随之发生相同的变化,同时应变片电阻值也发生相应变化。当测得的应变片电阻值变化量为R时,便可得到被测对象的应变值,根据应力与应变的关系,得到应力值为 =E(3-13)由此可知,应力值正比于应变,而试件应变正比于电阻值的变化,所以应力正比于电阻值的变化,这就是利用应变片测量应变的基本原理。半导体应变片的灵敏系数比金属丝式的高,但半导体材料的温3.2 电阻应变片的结构、材料及粘贴电阻应变片的结构、材料及粘贴3.2.1 金属电阻应变片的结构金属电阻应变片的结构金属电阻应变片品种繁多,形式多样,常见的有丝式电阻应变片和箔式电阻应变片。金属电阻应变片的大体结构基本相同,图3-2所示是丝式金属电阻应变片的基本结构,由敏感栅、基片、覆盖层和引线等部分组成。敏感栅是应变片的核心部分,它粘贴在绝缘的基片上,其上再粘贴起保护作用的覆盖层,两端焊接引出导线。3.2 电阻应变片的结构、材料及粘贴3.2.1 金属图3-2 金属电阻应变片的结构图3-2 金属电阻应变片的结构图3-3是丝式电阻应变片和箔式电阻应变片的几种常用形式。丝式电阻应变片有回线式和短线式两种形式。回线式应变片是将电阻丝绕制成敏感栅粘贴在绝缘基层上,图3-3(a)为常见回线式应变片的基本形式;短线式应变片如图3-3(b)所示,敏感栅由电阻丝平行排列,两端用比栅丝直径大510倍的镀银丝短接构成。箔式电阻应变片是利用光刻、腐蚀等工艺制成的一种很薄的金属箔栅,其厚度一般在之间,可制成各种形状的敏感栅(即应变花),其优点是表面积和截面积之比大,散热条件好,允许通过的电流较大,可制成各种所需的形状,便于批量生产。图3-3中的(c)、(d)、(e)及(f)为常见的箔式应变片形状。图3-3是丝式电阻应变片和箔式电阻应变片的几种常用形式。图3-3 常用应变片的形状图3-3 常用应变片的形状3.2.2 金属电阻应变片的材料金属电阻应变片的材料对电阻丝材料应有如下要求:灵敏系数大,且在相当大的应变范围内保持常数;值大,即在同样长度、同样横截面积的电阻丝中具有较大的电阻值;电阻温度系数小,否则因环境温度变化也会改变其阻值;与铜线的焊接性能好,与其它金属的接触电势小;机械强度高,具有优良的机械加工性能。表3-1给出了常用金属电阻丝材料的性能数据。3.2.2 金属电阻应变片的材料对电阻丝材料应有如下康铜是目前应用最广泛的应变丝材料,它有很多优点:灵敏系数稳定性好,不但在弹性变形范围内能保持为常数,进入塑性变形范围内也基本上能保持为常数;电阻温度系数较小且稳定,当采用合适的热处理工艺时,可使电阻温度系数在5010-6/的范围内;加工性能好,易于焊接。因而国内外多以康铜作为应变丝材料。康铜是目前应用最广泛的应变丝材料,它有很多优点:灵敏系数表表3-1 常用金属电阻丝材料的性能常用金属电阻丝材料的性能 表3-1 常用金属电阻丝材料的性能 3.2.3 金属电阻应变片的粘贴金属电阻应变片的粘贴应变片是用黏结剂粘贴到被测件上的。黏结剂形成的胶层必须准确迅速地将被测件应变传递到敏感栅上。选择黏结剂时必须考虑应变片材料和被测件材料性能,不仅要求黏结力强,黏结后机械性能可靠,而且黏合层要有足够大的剪切弹性模量,良好的电绝缘性,蠕变和滞后小,耐湿,耐油,耐老化,动态应力测量时耐疲劳等。还要考虑到应变片的工作条件,如温度、相对湿度、稳定性要求以及贴片固化时加热加压的可能性等。常用的黏结剂类型有硝化纤维素型、氰基丙烯酸型、聚酯树脂型、环氧树脂型和酚醛树脂型等。3.2.3 金属电阻应变片的粘贴应变片是用黏结剂粘贴粘贴工艺包括被测件粘贴表面处理、贴片位置确定、涂底胶、贴片、干燥固化、贴片质量检查、引线的焊接与固定以及防护与屏蔽等。黏结剂的性能及应变片的粘贴质量直接影响着应变片的工作特性,如零漂、蠕变、滞后、灵敏系数、线性以及它们受温度变化影响的程度等。可见,选择黏结剂和正确的黏结工艺与应变片的测量精度有着极重要的关系。粘贴工艺包括被测件粘贴表面处理、贴片位置确定、涂底胶、贴3.3 电阻应变片的特性电阻应变片的特性3.3.1 弹性敏感元件及其基本特性弹性敏感元件及其基本特性物体在外力作用下而改变原来尺寸或形状的现象称为变形,而当外力去掉后物体又能完全恢复其原来的尺寸和形状,这种变形称为弹性变形。具有弹性变形特性的物体称为弹性元件。弹性元件在应变片测量技术中占有极其重要的地位。它首先把力、力矩或压力变换成相应的应变或位移,然后传递给粘贴在弹性元件上的应变片,通过应变片将力、力矩或压力转换成相应的电阻值。下面介绍弹性元件的基本特性。3.3 电阻应变片的特性3.3.1 弹性敏感元件1.刚度刚度刚度是弹性元件受外力作用下变形大小的量度,其定义是弹性元件单位变形下所需要的力,用C表示,其数学表达式为式中:F作用在弹性元件上的外力,单位为牛顿(N);x弹性元件所产生的变形,单位为毫米(mm)。(3-14)1.刚度刚度是弹性元件受外力作用下变形大小的量度图3-4 弹性特性曲线刚度也可以从弹性特性曲线上求得。图3-4中弹性特性曲线1上A点的刚度,可通过在A点作曲线1的切线,求该切线与水平夹角的正切来得出,即tan=dF/dx。若弹性元件的特性是线性的,则其刚度是一个常数,即tan=F/x=常数,如图3-4中的直线2所示。图3-4 弹性特性曲线刚度也可以从弹性特性曲线上求得。图2.灵敏度灵敏度通常用刚度的倒数来表示弹性元件的特性,称为弹性元件的灵敏度,一般用S表示,其表达式为从式(3-15)可以看出,灵敏度就是单位力作用下弹性元件产生变形的大小,灵敏度大,表明弹性元件软,变形大。与刚度相似,若弹性特性是线性的,则灵敏度为一常数;若弹性特性是非线性的,则灵敏度为一变数,即表示此弹性元件在弹性变形范围内,各处由单位力产生的变形大小是不同的。(3-15)2.灵敏度通常用刚度的倒数来表示弹性元件的特性,通常使用的弹性元件的材料为合金钢(40Cr,35CrMnSiA等)、铍青铜(Qbe2,等)、不锈钢(1Cr18Ni9Ti等)。传感器中弹性元件的输入量是力或压力,输出量是应变或位移。在力的变换中,弹性敏感元件通常有实心或空心圆柱体、等截面圆环、等截面或等强度悬臂梁等。变换压力的弹性敏感元件有弹簧管、膜片、膜盒、薄壁圆桶等。通常使用的弹性元件的材料为合金钢(40Cr,35CrMn3.3.2 电阻应变片的静态特性电阻应变片的静态特性应变片的电阻值是指应变片没有粘贴且未受应变时,在室温下测定的电阻值,即初始电阻值。金属电阻应变片的电阻值已标准化,有一定的系列,如60、120、250、350和1000,其中以120最为常用。1.灵敏系数灵敏系数当具有初始电阻值R的应变片粘贴于试件表面时,试件受力引起的表面应变,将传递给应变片的敏感栅,使其产生电阻相对变化R/R。理论和实验表明,在一定应变范围内R/R与轴向应变的关系满足下式:3.3.2 电阻应变片的静态特性应变片的电阻值是指应 定义K=(R/R)/为应变片的灵敏系数。它表示安装在被测试件上的应变在其轴向受到单向应力时,引起的电阻相对变化(R/R)与其单向应力引起的试件表面轴向应变()之比。必须指出:应变片的灵敏系数K并不等于其敏感栅整长应变丝的灵敏系数K0,一般情况下,KK0,这是因为,在单向应力产生应变时,K除受到敏感栅结构形状、成型工艺、黏结剂和基底性能的影响外,尤其受到栅端圆弧部分横向效应的影响。应变片的灵敏系数直接关系到应变测量的精度(3-16)定义K=(R/R)/为应变片的灵敏系数。它表示因此,K值通常采用从批量生产中每批抽样,在规定条件下,通过实测来确定,称为标称灵敏系数。上述规定条件是:试件材料取泊松比0的钢材;试件单向受力;应变片轴向与主应力方向一致。因此,K值通常采用从批量生产中每批抽样,在规定条件下,通过实2.横向效应横向效应当将图3-5所示的应变片粘贴在被测试件上时,由于其敏感栅是由n条长度为l1的直线段和直线段端部的n-1个半径为r的半圆圆弧或直线组成的,若该应变片承受轴向应力而产生纵向拉应变x,则各直线段的电阻将增加,但在半圆弧段则受到从+x到-x之间变化的应变,其电阻的变化将小于沿轴向安放的同样长度电阻丝电阻的变化。图3-5 应变片轴向受力及横向效应(a)应变片及轴向受力图;(b)应变片的横向效应图 2.横向效应当将图3-5所示的应变片粘贴在被测试综上所述,将直的电阻丝绕成敏感栅后,虽然长度不变,但应变状态不同,应变片敏感栅的电阻变化减小,因而其灵敏系数K较整长电阻丝的灵敏系数K0小,这种现象称为应变片的横向效应。为了减小横向效应产生的测量误差,现在一般多采用箔式应变片。综上所述,将直的电阻丝绕成敏感栅后,虽然长度不变,但应变3.绝缘电阻和最大工作电流绝缘电阻和最大工作电流应变片绝缘电阻是指已粘贴的应变片的引线与被测件之间的电阻值Rm。通常要求Rm在50100M以上。绝缘电阻下降将使测量系统的灵敏度降低,使应变片的指示应变产生误差。Rm取决于黏结剂及基底材料的种类及固化工艺。在常温使用条件下要采取必要的防潮措施,而在中温或高温条件下,要注意选取电绝缘性能良好的黏结剂和基底材料。3.绝缘电阻和最大工作电流应变片绝缘电阻是指已粘最大工作电流是指已安装的应变片允许通过敏感栅而不影响其工作特性的最大电流Imax。工作电流大,输出信号也大,灵敏度就高。但工作电流过大会使应变片过热,灵敏系数产生变化,零漂及蠕变增加,甚至烧毁应变片。工作电流的选取要根据试件的导热性能及敏感栅形状和尺寸来决定。通常静态测量时取25mA左右,动态测量时可取75100mA。箔式应变片散热条件好,电流可取得更大一些。在测量塑料、玻璃、陶瓷等导热性差的材料时,电流可取得小一些。最大工作电流是指已安装的应变片允许通过敏感栅而不影响其工3.3.3 电阻应变片的动态响应特性电阻应变片的动态响应特性电阻应变片在测量频率较高的动态应变时,应变是以应变波的形式在材料中传播的,它的传播速度与声波相同,对于钢材v5000m/s。应变波由试件材料表面,经黏合层、基片传播到敏感栅,所需的时间是非常短暂的,如应变波在黏合层和基片中的传播速度为1000m/s,黏合层和基片的总厚度为,则所需时间约为510-8s,因此可以忽略不计。但是由于应变片的敏感栅相对较长,当应变波在纵栅长度方向上传播时,只有在应变波通过敏感栅全部长度后,应变片所反映的波形经过一定时间的延迟,才能达到最大值。图3-6所示为应变片对阶跃应变的响应特性。3.3.3 电阻应变片的动态响应特性电阻应变片在测量由图可以看出上升时间tr (应变输出从10%上升到90%的最大值所需时间)可表示为式中:l0应变片基长;v应变波速。若取l0=20mm,v=5000m/s,则tr=3.210-6s。(3-17)图3-6 应变片对阶跃应变的响应特性(a)应变波为阶跃波;(b)理论响应特性;(c)实际响应特性(a)(b)(c)由图可以看出上升时间tr (应变输出从10%上升到90当测量按正弦规律变化的应变波时,由于应变片反映出来的应变波是应变片纵栅长度内所感受应变量的平均值,因此应变片所反映的波幅将低于真实应变波,从而带来一定的测量误差。显然这种误差将随应变片基长的增加而加大。图3-7表示应变片正处于应变波达到最大幅值时的瞬时情况,此时图3-7 应变片对正弦应变波的响应特性当测量按正弦规律变化的应变波时,由于应变片反映出来的应变 式中,为应变波波长。应变片长度为l0,测得基长l0内的平均应变p达到最大值,其值为因而应变波幅测量的相对误差e为 由上式可以看出,测量误差e与比值n=/l0有关。n值愈大,误差e愈小。一般可取n=1020,其误差小于1.6%0.4%。(3-18)(3-19)式中,为应变波波长。应变片长度为l0,测3.3.4 电阻应变片的温度误差及补偿电阻应变片的温度误差及补偿 1.电阻应变片的温度误差电阻应变片的温度误差由于测量现场环境温度的改变而给测量带来的附加误差,称为应变片的温度误差。产生应变片温度误差的主要因素有下述两个方面。1)电阻温度系数的影响敏感栅的电阻丝阻值随温度变化的关系可用下式表示:Rt=R0(1+0t)(3-20)3.3.4 电阻应变片的温度误差及补偿 1.电阻应变式中:Rt温度为t时的电阻值;R0温度为t0时的电阻值;0温度为t0时金属丝的电阻温度系数;t温度变化值,t=t-t0。当温度变化t时,电阻丝电阻的变化值为R=Rt-R0=R00t(3-21)式中:Rt温度为t时的电阻值;R0温度为t2)试件材料和电阻丝材料的线膨胀系数的影响当试件与电阻丝材料的线膨胀系数不同时,由于环境温度的变化,电阻丝会产生附加变形,从而产生附加电阻变化。设电阻丝和试件在温度为0时的长度均为l0,它们的线膨胀系数分别为s和g,若两者不粘贴,则它们的长度分别为ls=l0(1+st)(3-22)lg=l0(1+gt)(3-23)当两者粘贴在一起时,电阻丝产生的附加变形l、附加应变和附加电阻变化R分别为2)试件材料和电阻丝材料的线膨胀系数的影响当试件由式(3-21)和式(3-26)可得由于温度变化而引起的应变片总电阻相对变化量为(3-27)由式(3-21)和式(3-26)可得由于温度变化而引折合成附加应变量或虚假的应变t,有 由式(3-27)和式(3-28)可知,因环境温度变化而引起的附加电阻的相对变化量,除了与环境温度有关外,还与应变片自身的性能参数(K0,0,s)以及被测试件线膨胀系数g有关。(3-28)折合成附加应变量或虚假的应变t,有 由式(3-22.电阻应变片的温度补偿方法电阻应变片的温度补偿方法电阻应变片的温度补偿方法通常有线路补偿和应变片自补偿两大类。1)线路补偿法电桥补偿是最常用且效果较好的线路补偿法。图3-8(a)是电桥补偿法的原理图。电桥输出电压Uo与桥臂参数的关系为 Uo=A(R1R4-RBR3)(3-29)式中,A为由桥臂电阻和电源电压决定的常数。由上式可知,当R3和R4为常数时,R1和RB对电桥输出电压Uo的作用方向相反。利用这一基本关系可实现对温度的补偿。2.电阻应变片的温度补偿方法电阻应变片的温度补偿测量应变时,工作应变片R1粘贴在被测试件表面上,补偿应变片RB粘贴在与被测试件材料完全相同的补偿块上,且仅工作应变片承受应变,如图3-8(b)所示。当被测试件不承受应变时,R1和RB又处于同一环境温度为t的温度场中,调整电桥参数使之达到平衡,此时有Uo=A(R1R4-RBR3)=0(3-30)工程上,一般按R1=RB=R3=R4选取桥臂电阻。当温度升高或降低t=t-t0时,两个应变片因温度相同而引起的电阻变化量相等,电桥仍处于平衡状态,即Uo=A(R1+R1t)R4-(RB+RBt)R3=0(3-31)测量应变时,工作应变片R1粘贴在被测试件表面上,补偿应变图3-8 电桥补偿法 图3-8 电桥补偿法 若此时被测试件有应变的作用,则工作应变片电阻R1有新的增量R1=R1K,而补偿片因不承受应变,故不产生新的增量,此时电桥输出电压为Uo=AR1R4K(3-32)由上式可知,电桥的输出电压Uo仅与被测试件的应变有关,而与环境温度无关。应当指出,若要实现完全补偿,上述分析过程必须满足以下4个条件:在应变片工作过程中,保证R3=R4。若此时被测试件有应变的作用,则工作应变片电阻R1有新的R1和RB两个应变片应具有相同的电阻温度系数、线膨胀系数、应变灵敏度系数K和初始电阻值R0。粘贴补偿片的补偿块材料和粘贴工作片的被测试件材料必须一样,两者线膨胀系数相同。两应变片应处于同一温度场。R1和RB两个应变片应具有相同的电阻温度系数、线膨胀2)应变片的自补偿法应变片的自补偿法是利用自身具有温度补偿作用的应变片(称之为温度自补偿应变片)来补偿的。温度自补偿应变片的工作原理可由式(3-27)得出。要实现温度自补偿,必须有0=-K0(g-s)(3-33)上式表明,当被测试件的线膨胀系数g已知时,如果合理选择敏感栅材料,即其电阻温度系数0、灵敏系数K0以及线膨胀系数s满足式(3-33),则不论温度如何变化,均有Rt/R0=0,从而达到温度自补偿的目的。2)应变片的自补偿法应变片的自补偿法是利用自身具3.4 电阻应变片的测量电路电阻应变片的测量电路应变片将试件的应变转换成电阻的相对变化量R/R,要把微小应变引起的微小电阻变化测量出来,同时要把电阻相对变化R/R转换为电压或电流的变化,通常采用各种电桥电路。电桥有平衡电桥(零位法)和不平衡电桥(偏差法),电阻应变片的测量电路一般采用不平衡电桥。根据电源的不同,电桥分为直流电桥和交流电桥。交流电桥与直流电桥在原理上相似,下面对直流不平衡电桥进行分析。3.4 电阻应变片的测量电路应变片将试件的应变3.4.1 不平衡电桥的工作原理不平衡电桥的工作原理图3-9所示为直流单臂不平衡电桥,它的四个桥臂由电阻R1、R2、R3、R4组成,R1是应变片。初始状态下,电桥是平衡的,有R1R4=R2R3,输出电压Uo=0。当应变片R1承受应变时,其R1阻值发生变化,电桥失去平衡,设其增量为R1,则输出电压Uo为(3-34)3.4.1 不平衡电桥的工作原理图3-9所示为直流单图3-9 单臂直流电桥 图3-9 单臂直流电桥 设桥臂比n=R2/R1,由于R1R1,分母中R1/R1可忽略,并考虑到平衡条件R2/R1=R4/R3,则式(3-34)可写为 电桥电压灵敏度定义为(3-35)(3-36)设桥臂比n=R2/R1,由于R15的小曲率圆环,可用下面的式(3-54)及式(3-55)计算出A、B两点的应变。式中:h圆环厚度;b圆环宽度;E材料弹性模量。这样,测出A、B处的应变,即可得到载荷F。图3-14(b)中的M为圆环应力分布曲线,从图中可以看出,R2应变片所在位置应变为零,故R2应变片起温度补偿作用。(3-54)(3-55)对R/h5的小曲率圆环,可用下面的式(3-54)及式(3-3.悬臂梁式力传感器悬臂梁式力传感器1)等截面梁力传感器悬臂梁的横截面积处处相等,所以称为等截面梁,如图3-15所示。当外力F作用在梁的自由端时,固定端产生的应变最大,粘贴在应变片处的应变为式中:L0悬臂梁受力端距应变中心的长度;b、h梁的宽度和梁的厚度。(3-56)图3-15 等截面悬臂梁 3.悬臂梁式力传感器1)等截面梁力传感器2)等强度梁力传感器悬臂梁长度方向的截面积按一定规律变化时,是一种特殊形式的悬臂梁,如图3-16所示。当力作用在自由端时,梁内各断面产生的应力相等,表面上的应变也相等,所以称为等强度梁。等强度梁对在L方向上粘贴应变片的位置要求不严,应变片处的应变大小为(3-57)图3-16 等强度悬臂梁 2)等强度梁力传感器悬臂梁长度方向的截面积按一在悬臂梁式力传感器中,一般将应变片贴在距固定端较近的表面,且顺梁的方向上、下各贴两片,上面两个应变片受压时,下面两个应变片受拉,并将四个应变片组成全桥差动电桥。这样既可提高输出电压灵敏度,又可减小非线性误差。在悬臂梁式力传感器中,一般将应变片贴在距固定端较近的表面3.5.2 应变式压力传感器应变式压力传感器应变式压力传感器主要用来测量流动介质的动态或静态压力,如动力管道设备的进出口气体或液体的压力、发动机内部的压力、枪管及炮管内部的压力、内燃机管道的压力等。应变片压力传感器大多采用膜片式或筒式弹性元件。图3-17为膜片式压力传感器,应变片贴在膜片内壁,在压力p作用下,膜片产生径向应变r和切向应变t,表达式分别为(3-58)(3-59)3.5.2 应变式压力传感器应变式压力传感器主要用来式中:p膜片上均匀分布的压力;R、h膜片的半径和厚度;x离圆心的径向距离。由应力分布图可知,膜片弹性元件承受压力p时,其应变变化曲线的特点为:当x=0时,rmax=tmax;当x=R时,t=0,r=-2rmax。根据以上特点,一般在平膜片圆心处沿切向粘贴R1、R4两个应变片,在边缘处沿径向粘贴R2、R3两个应变片,然后接成全桥测量电路。式中:p膜片上均匀分布的压力;R、h膜片的图3-17 膜片式压力传感器(a)应变变化图;(b)应变片粘贴图3-17 膜片式压力传感器3.5.3 应变式容器内液体重量传感器应变式容器内液体重量传感器图3-18是插入式测量容器内液体重量的传感器示意图。该传感器有一根传压杆,上端安装微压传感器,为了提高灵敏度,共安装了两只。下端安装感压膜,感压膜感受上面液体的压力。当容器中溶液增多时,感压膜感受的压力就增大。将其上两个传感器Rt的电桥接成正向串接的双电桥电路,此时输出电压为Uo=U1-U2=(K1-K2)hg(3-60)式中,K1,K2为传感器传输系数。3.5.3 应变式容器内液体重量传感器图3-18是插由于hg表征着感压膜上面液体的重量,对于等截面的柱式容器,有(3-61)式中:Q容器内感压膜上面溶液的重量;A柱形容器的截面积。将上两式联立,得到容器内感压膜上面溶液重量与电桥输出电压之间的关系式为 上式表明,电桥输出电压与柱式容器内感压膜上面溶液的重量成线性关系,因此用此种方法可以测量容器内储存的溶液重量。(3-62)由于hg表征着感压膜上面液体的重量,对于等截面的柱式容图3-18 应变式容器内液体重量传感器 图3-18 应变式容器内液体重量传感器 3.5.4 应变式加速度传感器应变式加速度传感器应变式加速度传感器主要用于物体加速度的测量,其基本工作原理是:物体运动的加速度与作用在它上面的力成正比,与物体的质量成反比,即a=F/m。图3-19是应变片式加速度传感器的结构示意图,图中1是等强度梁,自由端安装质量块2,另一端固定在壳体3上。等强度梁上粘贴四个电阻应变敏感元件4。为了调节振动系统阻尼系数,在壳体内充满硅油。3.5.4 应变式加速度传感器应变式加速度传感器主要图3-19 电阻应变式加速度传感器结构图图3-19 电阻应变式加速度传感器结构图
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学培训


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!