资源描述
Chapter 7Atomic Structureand Periodicity无机化学英文ppt课件:chapter7Section7.1Electromagnetic RadiationCopyrightCengageLearning.Allrightsreserved2DifferentColoredFireworksCopyright Cengage Learning.Section7.1Electromagnetic RadiationCopyrightCengageLearning.Allrightsreserved3QuestionstoConsiderWhydowegetcolors?Whydodifferentchemicalsgiveusdifferentcolors?Copyright Cengage Learning.Section7.1Electromagnetic RadiationCopyrightCengageLearning.Allrightsreserved4ElectromagneticRadiationOneofthewaysthatenergytravelsthroughspace.Threecharacteristics:WavelengthFrequencySpeedCopyright Cengage Learning.Section7.1Electromagnetic RadiationCopyrightCengageLearning.Allrightsreserved5CharacteristicsWavelength()distancebetweentwoconsecutivepeaksortroughsinawave.Frequency()numberofwaves(cycles)persecondthatpassagivenpointinspaceSpeed(c)speedoflight(2.9979108m/s)Copyright Cengage Learning.Section7.1Electromagnetic Radiation6TheNatureofWaves6The Nature of WavesSection7.1Electromagnetic RadiationWave Functionk:angular wave numberT:period:angular frequencysinusoidal waveWave Functionk:angular wave nSection7.1Electromagnetic Radiationsuperpositionconstructive interferencesuperpositionconstructive inteSection7.1Electromagnetic Radiationdestructive interferencedestructive interferenceSection7.1Electromagnetic RadiationStanding Wave 驻波y=(2A sin kx)cos tStanding Wave 驻波y=(2A sin kx)Section7.1Electromagnetic Radiation无机化学英文ppt课件:chapter7Section7.1Electromagnetic RadiationTwo Dimensional WaveTwo Dimensional WaveSection7.1Electromagnetic Radiation无机化学英文ppt课件:chapter7Section7.1Electromagnetic Radiation无机化学英文ppt课件:chapter7Section7.1Electromagnetic Radiation无机化学英文ppt课件:chapter7Section7.1Electromagnetic Radiation无机化学英文ppt课件:chapter7Section7.1Electromagnetic RadiationDifferent behaviors of waves and particles.Different behaviors of waves aSection7.1Electromagnetic RadiationCopyrightCengageLearning.Allrightsreserved18ClassificationofElectromagneticRadiationCopyright Cengage Learning.Section7.2The Nature of MatterPickleLightCopyrightCengageLearning.Allrightsreserved19Pickle LightCopyright CengagSection7.2The Nature of MatterEnergycanbegainedorlostonlyinwholenumbermultiplesof.Asystemcantransferenergyonlyinwholequanta(or“packets”).Energyseemstohaveparticulatepropertiestoo.CopyrightCengageLearning.Allrightsreserved20Energy can be gained or lost oSection7.2The Nature of MatterEnergyisquantized.Electromagneticradiationisastreamof“particles”calledphotons.Plancksconstant=h=6.62610-34JsCopyrightCengageLearning.Allrightsreserved21Energy is quantized.Copyright Section7.2The Nature of MatterThePhotoelectriceffectCopyrightCengageLearning.AllrightsreservedThe Photoelectric effectCopyriSection7.2The Nature of MatterEnergyhasmassDualnatureoflight:Electromagneticradiation(andallmatter)exhibitswavepropertiesandparticulateproperties.CopyrightCengageLearning.Allrightsreserved23E=mc2Energy has massCopyright CenSection7.3The Atomic Spectrum of HydrogenContinuousspectrum(resultswhenwhitelightispassedthroughaprism)containsallthewavelengthsofvisiblelightLinespectrumeachlinecorrespondstoadiscretewavelength:HydrogenemissionspectrumCopyrightCengageLearning.Allrightsreserved24Continuous spectrum(results wSection7.3The Atomic Spectrum of HydrogenRefractionofWhiteLightCopyrightCengageLearning.AllrightsreservedRefraction of White LightCopyrSection7.3The Atomic Spectrum of HydrogenTheLineSpectrumofHydrogenCopyrightCengageLearning.AllrightsreservedThe Line Spectrum of HydrogenCSection7.3The Atomic Spectrum of HydrogenSignificanceOnlycertainenergiesareallowedfortheelectroninthehydrogenatom.Energyoftheelectroninthehydrogenatomisquantized.CopyrightCengageLearning.Allrightsreserved27SignificanceOnly certain energSection7.3The Atomic Spectrum of HydrogenWhyisitsignificantthatthecoloremittedfromthehydrogenemissionspectrumisnotwhite?Howdoestheemissionspectrumsupporttheideaofquantizedenergylevels?CopyrightCengageLearning.Allrightsreserved28CONCEPT CHECK!CONCEPT CHECK!Why is it significant that theSection7.4The Bohr ModelElectroninahydrogenatommovesaroundthenucleusonlyincertainallowedcircularorbits.Bohrsmodelgavehydrogenatomenergylevelsconsistentwiththehydrogenemissionspectrum.Groundstatelowestpossibleenergystate(n=1)CopyrightCengageLearning.Allrightsreserved29Electron in a hydrogen atom moSection7.4The Bohr ModelElectronicTransitionsintheBohrModelfortheHydrogenAtoma)AnEnergy-LevelDiagramforElectronicTransitionsCopyrightCengageLearning.Allrightsreserved30Electronic Transitions in the Section7.4The Bohr ModelElectronicTransitionsintheBohrModelfortheHydrogenAtomb)AnOrbit-TransitionDiagram,WhichAccountsfortheExperimentalSpectrumCopyrightCengageLearning.Allrightsreserved31Electronic Transitions in the Section7.4The Bohr ModelForasingleelectrontransitionfromoneenergyleveltoanother:E=changeinenergyoftheatom(energyoftheemittedphoton)nfinal=integer;finaldistancefromthenucleusninitial=integer;initialdistancefromthenucleusCopyrightCengageLearning.Allrightsreserved32For a single electron transitiSection7.4The Bohr ModelThemodelcorrectlyfitsthequantizedenergylevelsofthehydrogenatomandpostulatesonlycertainallowedcircularorbitsfortheelectron.Astheelectronbecomesmoretightlybound,itsenergybecomesmorenegativerelativetothezero-energyreferencestate(freeelectron).Astheelectronisbroughtclosertothenucleus,energyisreleasedfromthesystem.CopyrightCengageLearning.Allrightsreserved33The model correctly fits the qSection7.4The Bohr ModelBohrsmodelisincorrect.Thismodelonlyworksforhydrogen.Electronsmovearoundthenucleusincircularorbits.CopyrightCengageLearning.Allrightsreserved34Bohrs model is incorrect.ThiSection7.4The Bohr ModelWhatcoloroflightisemittedwhenanexcitedelectroninthehydrogenatomfallsfrom:a)n=5ton=2b)n=4ton=2c)n=3ton=2Whichtransitionresultsinthelongestwavelengthoflight?CopyrightCengageLearning.Allrightsreserved35blue,=434nmgreen,=486nmorange/red,=657nmEXERCISE!EXERCISE!What color of light is emitteSection7.5The Quantum Mechanical Model of the AtomWave Properties of MatterWave Properties of MatterDe Broglie deduced that the particle and wave properties are related by the following expression:is the wavelength associated with the particlem is the mass(in kg)u is the velocity(in m/s)The wavelength calculated from this equation is known as the de Broglie wavelength.Wave Properties of MatterDe BrSection7.5The Quantum Mechanical Model of the AtomDiffraction of ElectronsDiffraction of ElectronsX-ray diffraction pattern of aluminum foilElectron diffraction pattern of aluminum foil.Diffraction of ElectronsX-ray Section7.5The Quantum Mechanical Model of the Atom无机化学英文ppt课件:chapter7Section7.5The Quantum Mechanical Model of the AtomWedonotknowthedetailedpathwayofanelectron.Heisenberguncertaintyprinciple:Thereisafundamentallimitationtojusthowpreciselywecanknowboththepositionandmomentumofaparticleatagiventime.x=uncertaintyinaparticlesposition(m)=uncertaintyinaparticlesmomentumh=PlancksconstantCopyrightCengageLearning.Allrightsreserved39We do not know the detailed paQuantum(wave)MechanicsTime-independent Schrodinger wave equation with solutions called stationary-state functions.The wave function must satisfy1.y must be single-valued at all points.2.The total area under y2(x)must be equal to unity or3.y must be smooth or dy/dx must be continuous at all points.Quantum(wave)MechanicsTime-iQualitative Aspects of the Wavefunctionproportional to d2y/dx2 describes curvature of wavefunctionpotential energy portionkinetic energy portionGround-state wave function is a compromise to minimize each term.Qualitative Aspects of the WavThe Schrdinger EquationHY Y=EY Yd2Y Ydy2d2Y Ydx2d2Y Ydz2+8p p2mQ Qh2(E-V(x,y,z)Y Y(x,y,z)=0+how y changes in spacemass of electrontotal quantized energy of the atomic systempotential energy at x,y,zwave functionThe Schrdinger EquationHY=EThe wavefunction y contains all the dynamical information about the system it describes.The trick is to determine what y is.And to figure out how to extract the desired information.The Schrdinger equation is a secular equation(久期方程)!(operator)(eigenfunction)=(eigenvalue)(same eigenfunction)Solving Schrdinger Equation算符本征函数本征值The wavefunction y contains al无机化学英文ppt课件:chapter7Exact solution in polar spherical coordinates(r,q,f)results in three quantum numbers that indicate the allowed quantum states.Schrdinger Equation for Hydrogen principal quantum number,n:n=1,2,3,angular momentum quantum number,l:l=0,1,n-1 magnetic quantum number,ml:ml=-l,.-1,0,+1,+lExact solution in polar spheriatomic orbital:wavefunction for a single electron which describes the position of the electronHydrogen and hydrogen-like atoms orbital energy depends only on n.n1 multiple orbitals exist corresponding to different combination of n and l.They arecollectively called an energy shelldegenerate:have the same energyatomic orbital:wavefunction subshell:Within an energy shell,a given set of distinct orbitals exist with the same value of l.l012345Name of Subshellspdfghsubshell:Within an energy shSection7.5The Quantum Mechanical Model of the AtomPhysicalMeaningofaWaveFunction()Thesquareofthefunctionindicatestheprobabilityoffindinganelectronnearaparticularpointinspace.Probabilitydistributionintensityofcolorisusedtoindicatetheprobabilityvaluenearagivenpointinspace.CopyrightCengageLearning.Allrightsreserved48Physical Meaning of a Wave FunSection7.5The Quantum Mechanical Model of the AtomProbabilityDistributionforthe1sWaveFunctionCopyrightCengageLearning.Allrightsreserved49Probability Distribution for tSection7.5The Quantum Mechanical Model of the AtomRadialProbabilityDistributionCopyrightCengageLearning.Allrightsreserved50Radial Probability Distributio无机化学英文ppt课件:chapter7无机化学英文ppt课件:chapter7Nickel(110)Nickel(110)Cesium&Iodine on Copper(111)a molecule assembled from 8 cesium and 8 iodine atoms Cesium&Iodine on Copper(111Section7.5The Quantum Mechanical Model of the AtomRelativeOrbitalSizeDifficulttodefineprecisely.Orbitalisawavefunction.Pictureanorbitalasathree-dimensionalelectrondensitymap.Hydrogen1sorbital:Radiusofthespherethatencloses90%ofthetotalelectronprobability.CopyrightCengageLearning.Allrightsreserved55Relative Orbital SizeDifficultSection7.6Quantum NumbersPrincipalquantumnumber(n)sizeandenergyoftheorbital.Angularmomentumquantumnumber(l)shapeofatomicorbitals(sometimescalledasubshell).Magneticquantumnumber(ml)orientationoftheorbitalinspacerelativetotheotherorbitalsintheatom.56Principal quantum number(n)无机化学英文ppt课件:chapter7Section7.6Quantum NumbersQuantumNumbersfortheFirstFourLevelsofOrbitalsintheHydrogenAtomQuantum Numbers for the First Section7.6Quantum NumbersForprincipalquantumleveln=3,determinethenumberofallowedsubshells(differentvaluesofl),andgivethedesignationofeach.#ofallowedsubshells=3l=0,3sl=1,3pl=2,3dCopyrightCengageLearning.Allrightsreserved59EXERCISE!EXERCISE!For principal quantum level nSection7.6Quantum NumbersForl=2,determinethemagneticquantumnumbers(ml)andthenumberoforbitals.magneticquantumnumbers=2,1,0,1,2numberoforbitals=5CopyrightCengageLearning.Allrightsreserved60EXERCISE!EXERCISE!For l=2,determine the magnRadial and Angular Parts of the Wavefunctionradial partRadial and Angular Parts of th无机化学英文ppt课件:chapter7Section7.7Orbital Shapes and Energies1sOrbitalCopyrightCengageLearning.Allrightsreserved1s OrbitalCopyright Cengage Section7.7Orbital Shapes and EnergiesThreeRepresentationsoftheHydrogen1s,2s,and3sOrbitalsCopyrightCengageLearning.Allrightsreserved64Three Representations of the HSection7.7Orbital Shapes and Energies2pxOrbitalCopyrightCengageLearning.Allrightsreserved2px OrbitalCopyright CengageSection7.7Orbital Shapes and Energies2pyOrbitalCopyrightCengageLearning.Allrightsreserved2py OrbitalCopyright CengageSection7.7Orbital Shapes and Energies2pzOrbitalCopyrightCengageLearning.Allrightsreserved2pz OrbitalCopyright CengageSection7.7Orbital Shapes and EnergiesTheBoundarySurfaceRepresentationsofAllThree2pOrbitalsCopyrightCengageLearning.Allrightsreserved68The Boundary Surface RepresentSection7.7Orbital Shapes and Energies3dx2-y2OrbitalCopyrightCengageLearning.Allrightsreserved3dx2-y2 OrbitalCopyright CenSection7.7Orbital Shapes and Energies3dxyOrbitalCopyrightCengageLearning.Allrightsreserved3dxy OrbitalCopyright CengagSection7.7Orbital Shapes and Energies3dxzOrbitalCopyrightCengageLearning.Allrightsreserved3dxz OrbitalCopyright CengagSection7.7Orbital Shapes and Energies3dyzOrbitalCopyrightCengageLearning.Allrightsreserved3dyz OrbitalCopyright CengagSection7.7Orbital Shapes and Energies3dz2CopyrightCengageLearning.Allrightsreserved3dz2Copyright Cengage LearniSection7.7Orbital Shapes and EnergiesTheBoundarySurfacesofAllofthe3dOrbitalsCopyrightCengageLearning.Allrightsreserved74The Boundary Surfaces of All oSection7.7Orbital Shapes and EnergiesRepresentationofthe4fOrbitalsinTermsofTheirBoundarySurfacesCopyrightCengageLearning.Allrightsreserved75Representation of the 4f OrbitSection7.8Electron Spin and the Pauli PrincipleElectronSpinElectronspinquantumnumber(ms)canbe+or-.Pauliexclusionprinciple-inagivenatomnotwoelectronscanhavethesamesetoffourquantumnumbers.Anorbitalcanholdonlytwoelectrons,andtheymusthaveoppositespins.CopyrightCengageLearning.Allrightsreserved76Electron SpinElectron spin quaQuantum NumbersQuantum NumbersThe electron spin quantum number(ms)is used to specify an electrons spin.There are two possible directions of spin.Allowed values of ms are+and.Quantum NumbersThe electron spQuantum NumbersQuantum NumbersA beam of atoms is split by a magnetic field.Statistically,half of the electrons spin clockwise,the other half spin counterclockwise.Quantum NumbersA beam of atomsSection7.9Polyelectronic AtomsAtomswithmorethanoneelectron.Electroncorrelationproblem:Sincetheelectronpathwaysareunknown,theelectronrepulsionscannotbecalculatedexactly.Whenelectronsareplacedinaparticularquantumlevel,they“prefer”theorbitalsintheorders,p,d,andthenf.CopyrightCengageLearning.Allrightsreserved79Atoms with more than one electWavefunctions for Many Electron AtomsFor helium(He):function of six position variables,x1,y1,and z1 for electron 1 and x2,y2,and z2 for electron 2.For an atom with N electronsWavefunctionsforManyElectroSchrodinger equation for helium(He)potential energy termkinetic energy termPotential energy term:electron-electron repulsionelectron-nuclear attractionElectron-electron repulsions not present in hydrogen.SchrodingerequationforheliuWithout electron-electron repulsionswhere f denotes an orbital for an individual electronleads to unsatisfactory results.Solution:self-consistent field(Hartree/SCF)method Withoutelectron-electronrepuSelf-consistent field(Hartee/SCF)method For an atom with N electronsSelf-consistentfield(Hartee/Schematic representation of SCF method SCF orbitals can be described using the same set of quantum numbers(n,l,ml).The four quantum number(n,l,ml,ms)completely label an electron in any orbital in any atom.Computationally intensive accomplished by sophisticated computer programs.SchematicrepresentationofSCSection7.9Polyelectronic AtomsPenetrationEffectA2selectronpenetratestothenucleusmorethanoneinthe2porbital.Thiscausesanelectronina2sorbitaltobeattractedtothenucleusmorestronglythananelectronina2porbital.Thus,the2sorbitalislowerinenergythanthe2porbitalsinapolyelectronicatom.CopyrightCengageLearning.Allrightsreserved85Penetration EffectA 2s electroSection7.9Polyelectronic AtomsOrbitalEnergiesCopyrightCengageLearning.AllrightsreservedOrbital EnergiesCopyright CeSection7.9Polyelectronic AtomsAComparisonoftheRadialProbabilityDistributionsofthe2sand2pOrbitalsCopyrightCengageLearning.Allrightsreserved87A Comparison of the Radial ProSection7.9Polyelectronic AtomsTheRadialProbabilityDistributionofthe3sOrbitalCopyrightCengageLearning.Allrightsreserved88The Radial Probability DistribSection7.9Polyelectronic AtomsAComparisonoftheRadialProbabilityDistributionsofthe3s,3p,and3dOrbitalsCopyrightCengageLearning.Allrightsreserved89A Comparison of the Radial ProSection7.9Polyelectronic Atoms无机化学英文ppt课件:chapter7Factors Affecting Atomic Orbital EnergiesAdditional electron in the same orbitalAn additional electron raises the orbital energy through electron-electron repulsions.Additional electrons in inner orbitalsInner electrons shield outer electrons more effectively than do electrons in the same sublevel.Higher nuclear charge lowers orbital energy(stabilizes the system)by increasing nucleus-electron attractions.The Effect of Nuclear Charge(Zeffective)The Effect of Electron Repulsions(Shielding)FactorsAffectingAtomicOrbitThe effect of nuclear charge on orbital energy.TheeffectofnuclearchargeoShieldingShieldingEnergy of orbitals in a single electron atomEnergy only depends on principal quantum number nEn=-RH()1n2n=1n=2n=3EnergyoforbitalsinasingleEnergy of orbitals in a multi-electron atomEnergy depends on n and ln=1 l=0n=2 l=0n=2 l=1n=3 l=0n=3 l=1n=3 l=2Energyoforbitalsinamulti-Order of orbitals(filling)in multi-electron atom1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6sGraphical representation of Madelungs ruleOrderoforbitals(filling)in无机化学英文ppt课件:chapter7Paramagneticunpaired electrons2pDiamagneticall electrons paired2pDiamagnetism and ParamagnetismParamagneticunpairedelectronsParamagnetic-attracted by a magnetDiamagnetic slightly repelled by a magnetGouy balance -provides direct evidence of electron configurations Paramagnetic-attractedbyaSection7.10The History of the Periodic TableOriginallyconstructedtorepresentthepatternsobservedinthechemicalpropertiesoftheelements.Mendeleevisgiventhemostcreditforthecurrentversionoftheperiodictablebecauseheemphasizedhowusefultheperiodictablecouldbeinpredictingtheexistenceandpropertiesofstillunknownelements.CopyrightCengageLearning.Allrightsreserved100Originally constructed to reprAufbau(building-up)Principleorbital energy negative amount of energy required to remove an electron from a given orbitalAn electron configuration is constructed according to the Pauli exclusion principle,so that the total energy of the configuration is a minimum.Aufbau(building-up)PrincipleSection7.11The Aufbau Principle and the Periodic TableAufbauPrincipleAsprotonsareaddedonebyonetothenucleustobuilduptheelements,electronsaresimilarlyaddedtohydrogen-likeorbitals.Anoxygenatomhasanelectronarrangementoftwoelectronsinthe1ssubshell,twoelectronsinthe2ssubshell,andfourelectronsinthe2psubshell.Oxygen:1s22s22p4CopyrightCengageLearning.Allrightsreserved102Aufbau PrincipleAs protons areSection7.11The Aufbau Principle and the Periodic TableHundsRuleThelowestenergyconfigurationforanatomistheonehavingthemaximumnumberofunpairedelectronsallowedbythePauliprincipleinaparticularsetofdegenerate(sameenergy)orbitals.CopyrightCengageLearning.Allrightsreserved103Hunds RuleThe lowest energy celectron configuration how electrons are distributed among the various atomic orbitalsorbital diagram pictorial representation of the electron configuration which shows the spin of the electronelectronconfigurationhowePauli Exclusion PrincipleNo two electrons in an atom can have the same four quantum numbers(n,l,ml,ms).Same values of msEffect of radial probability function for Ar3 distinct shellsCorrect representationPauliExclusionPrincipleNotwSection7.11The Aufbau Principle and the Periodic TableOrbitalDiagramAnotationthatshowshowmanyelectronsanatomhasineachofitsoccupiedelectronorbitals.Oxygen:1s22s22p4Oxygen:1s2s2pCopyrightCengageLearning.Allrightsreserved106Orbital DiagramA notation thatSection7.11The Aufbau Principle and the Periodic TableValenceElectronsTheelectronsintheoutermostprincipalquantumlevelofanatom.1s22s22p6(valenceelectrons=8)Theelementsinthesamegroupontheperiodictablehavethesamevalenceelectronconfiguration.CopyrightCengageLearning.Allrightsreserved107Valence ElectronsThe electronsSection7.11The Aufbau Principle and the Periodic TableTheOrbitalsBeingFilledforElementsinVariousPartsofthePeriodicTableCopyrightCengageLearning.Allrightsreserved108The Orbitals Being Filled for Section7.11The Aufbau Principle and the Periodic TableDeterminetheexpectedelectronconfigurationsforeachofthefollowing.a)S1s22s22p63s23p4orNe
展开阅读全文