实际问题与二次函

上传人:gmk****56 文档编号:240754261 上传时间:2024-05-05 格式:PPT 页数:11 大小:1,014KB
返回 下载 相关 举报
实际问题与二次函_第1页
第1页 / 共11页
实际问题与二次函_第2页
第2页 / 共11页
实际问题与二次函_第3页
第3页 / 共11页
点击查看更多>>
资源描述
22.3实际问题与二次函数(第2课时)活动1 1.求下列函数的最大值或最小值求下列函数的最大值或最小值2.某商品现在的售价为每件某商品现在的售价为每件60元,每星期元,每星期可卖出可卖出300件件.已知商品的进价为每件已知商品的进价为每件40元,那元,那么一周的利润是多少?么一周的利润是多少?活动2 某商品现在的某商品现在的售价售价为每件为每件60元,每星元,每星期可卖出期可卖出300件市场调查反映:如果调整件市场调查反映:如果调整价格,每价格,每涨价涨价1元,每星期要元,每星期要少卖少卖出出10件;件;每每降价降价1元,每星期可元,每星期可多卖多卖出出20件;已知商件;已知商品的品的进价进价为每件为每件40元,如何定价才能使元,如何定价才能使利利润最大润最大?请大家带着以下几个问题读题请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?哪些量随之发生了变化?某商品现在的售价为每件某商品现在的售价为每件60元,每元,每星期可卖出星期可卖出300件,市场调查反映:件,市场调查反映:每涨价每涨价1元,每星期少卖出元,每星期少卖出10件;件;每降价每降价1元,每星期可多卖出元,每星期可多卖出20件,件,已知商品的进价为每件已知商品的进价为每件40元,如何元,如何定价才能使利润最大?定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况先来看涨价的情况:先来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商品的利润元,则每星期售出商品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。涨价的函数关系式。涨价x元时则每星元时则每星期少卖期少卖 件,实际卖出件,实际卖出 件件,每件利润为每件利润为 元,元,因此,所得利润为因此,所得利润为元元10 x(300-10 x)(60+x-40)(60+x-40)(300-10 x)y=(60+x-40)(300-10 x)(0X30)即y=-10(x-5)+6250当x=5时,y最大值=6250怎样确定x的取值范围可以看出,这个函数的可以看出,这个函数的图像是一条抛物线的一图像是一条抛物线的一部分,这条抛物线的顶部分,这条抛物线的顶点是函数图像的最高点,点是函数图像的最高点,也就是说当也就是说当x取顶点坐取顶点坐标的横坐标时,这个函标的横坐标时,这个函数有最大值。由公式可数有最大值。由公式可以求出顶点的横坐标以求出顶点的横坐标.所以,当定价为所以,当定价为65元时,利润最大,最大利润为元时,利润最大,最大利润为6250元元也可以这样求极值在降价的情况下,最大利润是多少?请你参考在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。的过程得出答案。解:设降价解:设降价x元时利润最大,则每星期可多卖元时利润最大,则每星期可多卖20 x件,实件,实际卖出(际卖出(300+20 x)件,每件利润为(件,每件利润为(60-40-x)元,因)元,因此,得利润此,得利润由由(1)(2)的讨论及现在的销的讨论及现在的销售情况售情况,你知道应该如何定价你知道应该如何定价能使利润最大了吗能使利润最大了吗?y=(300+20 x)(60-40-x)=-20(x-5x+6.25)+6150=-20(x-2.5)+6150 x=2.5时,y极大值=6150你能回答了吧!你能回答了吧!怎样确定x的取值范围(0 x20)1 1、实际问题转化为数学问题,建立数学模、实际问题转化为数学问题,建立数学模型;型;2 2、列出二次函数的解析式,并根据自变量、列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;的实际意义,确定自变量的取值范围;3 3、在自变量的取值范围内,运用公式法或、在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。通过配方求出二次函数的最大值或最小值。4 4、回答问题,作出答案。、回答问题,作出答案。w 某商店购进一批单价为某商店购进一批单价为2020元的日用品元的日用品,如果以单价如果以单价3030元销售元销售,那么半个月内可以售出那么半个月内可以售出400400件件.根据销售经验根据销售经验,提提高单价会导致销售量的减少高单价会导致销售量的减少,即销售单价每提高即销售单价每提高1 1元元,销售销售量相应减少量相应减少2020件件.售价售价提高多少元时提高多少元时,才能在半个月内获才能在半个月内获得最大利润得最大利润?解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20 x)=-20 x2+200 x+4000 =-20(x-5)2+4500 当x=5时,y最大=4500 答:当售价提高5元时,半月内可获最大利润4500元我来当老板我来当老板牛刀小试x(元元)152030y(件件)252010 若日销售量若日销售量 y 是销售价是销售价 x 的一次函数。的一次函数。(1)求出日销售量)求出日销售量 y(件)与销售价(件)与销售价 x(元)元)的函数关系式?的函数关系式?(2)要使每日的销售利润最大,每件产品的)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少销售价应定为多少元?此时每日销售利润是多少元?元?某产品每件成本某产品每件成本10元,试销阶段每件产品的销售价元,试销阶段每件产品的销售价 x(元)与产品的日销售量(元)与产品的日销售量 y(件)之间的关系如下表:(件)之间的关系如下表:(2)设每件产品的销售价应定为)设每件产品的销售价应定为 x 元,所获销售利润元,所获销售利润为为 w 元。则元。则 产品的销售价应定为产品的销售价应定为25元,此时每日获得最大销售利元,此时每日获得最大销售利润为润为225元。元。则则解得:解得:k=1,b40。(1)设此一次函数解析式为)设此一次函数解析式为 。所以一次函数解析为所以一次函数解析为 。归纳小结1、本节课你学到了哪些知识?2、作业:教材51页3、8 学习指要30页4、5题
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!