三角函数诱导公式及记忆方法

上传人:max****ui 文档编号:18646904 上传时间:2021-01-02 格式:DOC 页数:6 大小:59.91KB
返回 下载 相关 举报
三角函数诱导公式及记忆方法_第1页
第1页 / 共6页
三角函数诱导公式及记忆方法_第2页
第2页 / 共6页
三角函数诱导公式及记忆方法_第3页
第3页 / 共6页
点击查看更多>>
资源描述
三角函数诱导公式目录诱导公式的本质 常用的诱导公式 其他三角函数知识公式推导过程同角三角函数的基本关系式 同角三角函数关系六角形记忆法 1. 两角和差公式 2. 二倍角的正弦、余弦和正切公式 3. 半角的正弦、余弦和正切公式 4. 万能公式 5. 三倍角的正弦、余弦和正切公式 6. 三角函数的和差化积公式 7. 三角函数的积化和差公式诱导公式的本质 常用的诱导公式 其他三角函数知识 公式推导过程同角三角函数的基本关系式 1. 同角三角函数关系六角形记忆法 2. 两角和差公式 3. 二倍角的正弦、余弦和正切公式 4. 半角的正弦、余弦和正切公式 5. 万能公式 6. 三倍角的正弦、余弦和正切公式 7. 三角函数的和差化积公式 8. 三角函数的积化和差公式诱导公式的本质所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。 常用的诱导公式公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k+)=sin kz cos(2k+)=cos kz tan(2k+)=tan kz cot(2k+)=cot kz sec(2k+)=sec kz csc(2k+)=csc kz 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin(+)=sin cos(+)=cos tan(+)=tan cot(+)=cot sec(+)=-sec csc(+)=-csc 公式三: 任意角与 -的三角函数值之间的关系: sin()=sin cos()=cos tan()=tan cot()=cot sec(-)=sec csc(-)=-csc 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin()=sin cos()=cos tan()=tan cot()=cot sec(-)=-sec csc(-)=csc 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2)=sin cos(2)=cos tan(2)=tan cot(2)=cot sec(2-)=sec csc(2-)=-csc 公式六: /2与的三角函数值之间的关系: sin(/2+)=cos cos(/2+)=sin tan(/2+)=cot cot(/2+)=tan sec(/2+)=-csc csc(/2+)=sec sin(/2)=cos cos(/2)=sin tan(/2)=cot cot(/2)=tan sec(/2-)=csc csc(/2-)=sec 推算公式:3/2与的三角函数值之间的关系: sin(3/2+)=cos cos(3/2+)=sin tan(3/2+)=cot cot(3/2+)=tan sec(3/2+)=csc csc(3/2+)=-sec sin(3/2)=cos cos(3/2)=sin tan(3/2)=cot cot(3/2)=tan sec(3/2-)=-csc csc(3/2-)=-sec1 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角看做锐角,不考虑角所在象限,看n(/2)是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“”; 第三象限内只有正切和余切是“+”,其余全部是“”; 第四象限内只有余弦是“+”,其余全部是“”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 其他三角函数知识同角三角函数的基本关系式倒数关系 tan cot=1 sin csc=1 cos sec=1 商的关系 sin/cos=tan=sec/csc cos/sin=cot=csc/sec 平方关系 sin2()+cos2()=1 1+tan2()=sec2() 1+cot2()=csc2() 同角三角函数关系六角形记忆法构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式sin(+)=sincos+cossin sin()=sincoscossin cos(+)=coscossinsin cos()=coscos+sinsin tan(+)=(tan+tan )/(1tan tan) tan()=(tantan)/(1+tan tan) 二倍角的正弦、余弦和正切公式sin2=2sincos cos2=cos2()sin2()=2cos2()1=12sin2() tan2=2tan/(1tan2() 半角的正弦、余弦和正切公式sin2(/2)=(1cos)/2 cos2(/2)=(1+cos)/2 tan2(/2)=(1cos)/(1+cos) tan(/2)=(1cos)/sin=sin/1+cos 万能公式sin=2tan(/2)/(1+tan2(/2) cos=(1tan2(/2)/(1+tan2(/2) tan=(2tan(/2)/(1tan2(/2) 三倍角的正弦、余弦和正切公式sin3=3sin4sin3() cos3=4cos3()3cos tan3=(3tantan3()/(13tan2() 三角函数的和差化积公式sin+sin=2sin(+)/2) cos()/2) sinsin=2cos(+)/2) sin()/2) cos+cos=2cos(+)/2)cos()/2) coscos=2sin(+)/2)sin()/2) 三角函数的积化和差公式sincos=0.5sin(+)+sin() cossin=0.5sin(+)sin() coscos=0.5cos(+)+cos() sinsin= 0.5cos(+)cos() 公式推导过程万能公式推导 sin2=2sincos=2sincos/(cos2()+sin2().*, (因为cos2()+sin2()=1) 再把*分式上下同除cos2(),可得sin2=2tan/(1+tan2() 然后用/2代替即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导 tan3=sin3/cos3 =(sin2cos+cos2sin)/(cos2cos-sin2sin) =(2sincos2()+cos2()sinsin3()/(cos3()cossin2()2sin2()cos) 上下同除以cos3(),得: tan3=(3tantan3()/(1-3tan2() sin3=sin(2+)=sin2cos+cos2sin =2sincos2()+(12sin2()sin =2sin2sin3()+sin2sin3() =3sin4sin3() cos3=cos(2+)=cos2cossin2sin =(2cos2()1)cos2cossin2() =2cos3()cos+(2cos2cos3() =4cos3()3cos 即 sin3=3sin4sin3() cos3=4cos3()3cos 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b)/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b)/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b)/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b)/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b)/2 cosa*sinb=(sin(a+b)-sin(a-b)/2 cosa*cosb=(cos(a+b)+cos(a-b)/2 sina*sinb=-(cos(a+b)-cos(a-b)/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin(x+y)/2)*cos(x-y)/2) sinx-siny=2cos(x+y)/2)*sin(x-y)/2) cosx+cosy=2cos(x+y)/2)*cos(x-y)/2) cosx-cosy=-2sin(x+y)/2)*sin(x-y)/2)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!