静定桁架和组合结构

上传人:san****019 文档编号:15968098 上传时间:2020-09-14 格式:PPT 页数:41 大小:862.10KB
返回 下载 相关 举报
静定桁架和组合结构_第1页
第1页 / 共41页
静定桁架和组合结构_第2页
第2页 / 共41页
静定桁架和组合结构_第3页
第3页 / 共41页
点击查看更多>>
资源描述
第六章 静定桁架和组合结构,学习内容 桁架的特点及分类,结点法、截面法及其联合应用,对称性的利用,几种梁式桁架的受力特点,组合结构的计算。,学习目的和要求 不少静定桁架直接用于工程实际。另外静定桁架还是解算超静定桁架的基础。所以,静定桁架的内力计算是十分重要的,是结构力学的重点内容之一。通过本章学习要求达到: 了解桁架的受力特点及按几何组成分类。 熟练运用结点法和截面法及其联合应用,会计算简桁架、联合桁架既复杂桁架。 掌握对称条件的利用;掌握组合结构的计算。 要注意考察结构的几何组成,确定计算方法。,6.1 桁架的特点及分类,桁架是由梁演变而来,将梁离中性轴近的未被充分利用的材料掏空,就得到图所示的梁,荷载通过横梁作用在桁架的结点上。,1、为简化桁架的计算,常假定: 结点都是光滑 的铰结点。 各杆都是直杆且通过铰的中心。 荷载和支座反力都作用在结点上。 根据上述假定,桁架的各杆为二力杆,只承受轴力。 2、桁架的分类 按几何构造特点,桁架可分为三类。 简单桁架 由基础或一个基本铰结三角形开始, 而组成的桁架。 联合桁架 由几个简单桁架按几何不变体系的组成规律联合组成的桁架。 复杂桁架 不按上述两种方式组成的其它形式的桁架。,桁架的分类: 按几何组成可分为以下三种,1、简单桁架 由基础或一个基本铰结三角形开始,依此增加 二元体所组成的桁架,2、联合桁架由简单桁架按 几何不变体系组成法则所组 成的桁架。,3、复杂桁架-不属于以上两类桁架之外的其它桁架。其几何 不变性往往无法用两刚片及三刚片组成法则加 以分析,需用零荷载法等予以判别。,复杂桁架不仅分析计算麻烦,而且施工也不大方便。工程上较少使用。,6.2结点法,结点法 取单个结点为分离体,分离体受的力构成一个平面汇交力系,可建立两个独立的平衡方程。 对于静定桁架,只要列出全部独立的平衡方程,然后联立求解,便可求出全部的轴力和反力。但是为了避免解联立方程,对于简单桁架用结点法求解时,按照撤除二元体的次序截取结点,可求出全部内力,而不需求解联立方程。,特殊结点的力学性质(零杆的判断): 由结点的平衡条件得到: 以上结果仅适用于桁架结点(即结点上各根杆均为桁架杆)。,找出桁架中的零杆,0,0,0,0,0,0,0,0,8根,0,0,0,0,0,0,0,7根,0,0,0,0,0,0,0,9根,0,0,【例题 】求图所示桁架的各杆轴力。解: 因为A,B结点为T型结点,得到AF,BF是零杆, 进一步得到FC,FD是零杆, DE,DB是零杆, 最后由结点C的平衡条件得到NCA=P, NCE=1.414P 。,6.3 截面法,1、截面法基本思想:取桁架中的一部分(包含两个或两个以上的结点)为分离体,其受力图为一平面任意力系, 可建立三个独立的平衡方程。为了避免求解联立方程组,所选截面切断的未知轴力杆数一般不多于三根。并注意: 对两未知力交点取矩或沿与两个平行未知力垂直的方向投影列平衡方程,可使一个方程中只含一个未知力。,例题 1,截面法例1,例:求桁架中指定杆件的轴力。,【解】:,取截面以左为分离体,N1,N2,N3,MD=3N1+P/26=0,得 N1=P,MC=2X3P/22=0,得 X3=P/2,N3=X3/44.12=0.52P,X=N1+X2+X3=0, X2=P/2,N2=5X2/4=5P/8,例题 2,截面法例2,B,例:求桁架中a杆件的轴力。,例题 3,截面法例3,求图示桁架中AD、BE杆的轴力。, 取截面以上,取截面以上,取截面以上,求图示桁架指定杆轴力。,解: 找出零杆如图示;,0,0,0,0,0,0,由D点,1-1以右,2-2以下,3、结点法与截面法的联合应用在桁架计算中,有时联合应用结点法和截面法更为方便。,例题 4,截面法例4,1、弦杆,M2=N16+(2PP/2)4=0 N1= P,M5=N46 (2PP/2)4=0 N4= P,N1= P,N4= P,2、斜杆 结点6为K型结点。 N6=N5 再由Y=0 得:Y5Y6+2PP P/2=0 Y6=P/4 N6=N5=5P/12,3、竖杆 取结点7为分离体。由于对称:N3=N5,7,由Y=0 得: Y5+Y3+ P+N2=0 N2=P/2,求指定杆的轴力。,先求出反力。,先求斜杆轴力再求竖杆轴力!,求 a、b 杆轴力,解:1、由内部X形结点知: 位于同一斜线上的腹杆内力 相等。 2、由周边上的K形结点 知各腹杆内力值相等,但正 负号交替变化。所有右上斜 杆同号(设为N),所有右 下斜杆同号(设为N)。,3、取图示分离体:,4、取F点为分离体,5、取H点为分离体,H,6.4 梁式桁架受力特点,弦杆轴力: N=M0/r,上弦压,上弦拉。,1、平行弦桁架:r=h=常数,弦杆内力两端小,中间大;腹杆内力: Y=Q0,两端大,中间小。斜杆拉,竖杆压。2、三角形桁架:r自跨中向两端按直线规律变化比M0 减少的快,弦杆内力两端大,中间小;腹杆内力两端小中间大。斜杆拉,竖杆压。3、抛物线形桁架: r、M0都按抛物线规律变化,各上弦杆内力的水平分力相等等于各下弦杆内力;腹杆不受力。,几类简支桁架的共同特点是: 上弦受压,下弦受拉, 竖杆、斜杆内力符号相反。斜杆向内斜受拉,向外斜受压,6.5 组合结构,组合结构由链杆和梁式杆组成。常用于吊车梁、桥梁的承重结构、房屋中的屋架。,计算组合结构时应注意: 注意区分链杆(只受轴力)和梁式杆(受轴力、剪力和弯矩); 前面关于桁架结点的一些特性对有梁式杆的结点不再适用; 一般先计算反力和链杆的轴力,然后计算梁式杆的内力; 取分离体时,尽量不截断梁式杆。,例题 5,组合结构 1,NAB=,NCD=0 ( ), N1=N2=0 N1=N2 N1N2 N1=N20,例题 6,组合结构 2,求链杆的内力,截面的剪力和轴力: Q=Ycos15sin N= Ysin 15cos 其中Y为截面以左所有竖向力的合力。 Sin=0.084,cos=0.996,15,15,3.5,-3.5,15.4,+,解:求反力,15,作出 内力图,讨论:影响屋架内 力图的主要原因 有两个: 高跨比f /l 高跨比越小轴力 NDE=MC0/ f 越大屋架轴力也 越大。,f1与f2的关系 当高度f 确定 后,内力状态随 f1与 f2的比例不 同而变。,弦杆轴力变化 幅度不大,但上弦杆弯矩变化幅度很大。,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!