2021高考数学一轮复习 课后限时集训15 导数与函数的单调性 理 北师大版

上传人:Sc****h 文档编号:116815880 上传时间:2022-07-06 格式:DOC 页数:8 大小:133KB
返回 下载 相关 举报
2021高考数学一轮复习 课后限时集训15 导数与函数的单调性 理 北师大版_第1页
第1页 / 共8页
2021高考数学一轮复习 课后限时集训15 导数与函数的单调性 理 北师大版_第2页
第2页 / 共8页
2021高考数学一轮复习 课后限时集训15 导数与函数的单调性 理 北师大版_第3页
第3页 / 共8页
点击查看更多>>
资源描述
课后限时集训15导数与函数的单调性建议用时:45分钟一、选择题1函数f(x)3xln x的单调递减区间是()A.B.C. D.B因为函数f(x)的定义域为(0,),且f(x)ln xxln x1,令f(x)0,解得0x,所以f(x)的单调递减区间是.2已知函数f(x)的导函数f(x)的图像如图所示,则函数f(x)的图像可能是()ABCDC由导函数f(x)的图像可知,函数yf(x)先减再增,可排除选项A,B;又f(x)0的根为正数,即yf(x)的极值点为正数,所以可排除选项D,选C.3若函数f(x)kxln x在区间(1,)上单调递增,则k的取值范围是()A(,2 B(,1C2,) D1,)D由于f(x)k,f(x)kxln x在区间(1,)上单调递增f(x)k0在(1,)上恒成立由于k,而01,所以k1.即k的取值范围为1,)4设函数f(x)x29ln x在区间a1,a1上单调递减,则实数a的取值范围是()A(1,2 B(4,)C(,2) D(0,3A因为f(x)x29ln x,所以f(x)x(x0),由x0,得0x3,所以f(x)在(0,3上是减函数,则a1,a1(0,3,所以a10且a13,解得1a2.5函数f(x)在定义域R内可导,f(x)f(4x),且(x2)f(x)0.若af(0),bf,cf(3),则a,b,c的大小关系是()Acba BcabCabc DbacC由f(x)f(4x)可知,f(x)的图像关于直线x2对称,根据题意知,当x(,2)时,f(x)0,f(x)为减函数;当x(2,)时,f(x)0,f(x)为增函数所以f(3)f(1)ff(0),即cba,故选C.二、填空题6函数f(x)ln xax(a0)的单调递增区间为_由题意,知f(x)的定义域为(0,),由f(x)a0(a0),得0x,f(x)的单调递增区间为.7若函数f(x)ax33x2x恰好有三个单调区间,则实数a的取值范围是_(3,0)(0,)由题意知f(x)3ax26x1,由函数f(x)恰好有三个单调区间,得f(x)有两个不相等的零点,所以3ax26x10需满足a0,且3612a0,解得a3且a0,所以实数a的取值范围是(3,0)(0,)8若函数f(x)ln xax22x存在单调递减区间,则实数a的取值范围是_(1,)f(x)ax2,由题意知f(x)0有实数解,x0,ax22x10有实数解当a0时,显然满足;当a0时,只需44a0,1a0.综上知a1.三、解答题9已知函数f(x)(k为常数,e是自然对数的底数),曲线yf(x)在点(1,f(1)处的切线与x轴平行(1)求k的值;(2)求f(x)的单调区间解(1)由题意得f(x),又因为f(1)0,故k1.(2)由(1)知,f(x),设h(x)ln x1(x0),则h(x)0,即h(x)在(0,)上是减函数由h(1)0知,当0x1时,h(x)0,从而f(x)0;当x1时,h(x)0,从而f(x)0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,)10已知函数f(x)x3ax1.(1)若f(x)在R上为增函数,求实数a的取值范围;(2)若函数f(x)在(1,1)上为单调减函数,求实数a的取值范围;(3)若函数f(x)的单调递减区间为(1,1),求实数a的值;(4)若函数f(x)在区间(1,1)上不单调,求实数a的取值范围解(1)因为f(x)在(,)上是增函数,所以f(x)3x2a0在(,)上恒成立,即a3x2对xR恒成立因为3x20,所以只需a0.又因为a0时,f(x)3x20,f(x)x31在R上是增函数,所以a0,即实数a的取值范围为(,0(2)由题意知f(x)3x2a0在(1,1)上恒成立,所以a3x2在(1,1)上恒成立,因为当1x1时,3x23,所以a3,所以a的取值范围为3,)(3)由题意知f(x)3x2a,则f(x)的单调递减区间为,又f(x)的单调递减区间为(1,1),所以1,解得a3.(4)由题意知:f(x)3x2a,当a0时,f(x)0,此时f(x)在(,)上为增函数,不合题意,故a0.令f(x)0,解得x.因为f(x)在区间(1,1)上不单调,所以f(x)0在(1,1)上有解,需01,得0a3,所以实数a的取值范围为(0,3)1(2016全国卷)若函数f(x)xsin 2xasin x在(,)单调递增,则a的取值范围是()A.1,1 B.C. D.C取a1,则f(x)xsin 2xsin x,f(x)1cos 2xcos x,但f(0)110,不具备在(,)单调递增的条件,故排除A,B,D.故选C.2已知定义在上的函数f(x)的导函数为f(x),且对于任意的x,都有f(x)sin xf(x)cos x,则()A.f f B. f f(1)C.f f D.f f A令g(x),则g(x),由已知得g(x)0在上恒成立,g(x)在上单调递减,gg,即,ff.3已知f(x)是函数f(x)的导函数,f(1)e,对于任意的xR,2f(x)f(x)0,则不等式f(x)e2x1的解集为_(1,)设F(x),则F(x).因为2f(x)f(x)0,所以F(x)0,即F(x)是减函数,f(x)e2x1等价于1,即F(x)1.又因为f(1)e,所以F(1)1,则不等式f(x)e2x1的解集是(1,)4已知函数g(x)ln xax2(2a1)x,若a0,试讨论函数g(x)的单调性解g(x).函数g(x)的定义域为(0,),当a0时,g(x).由g(x)0,得0x1,由g(x)0,得x1.当a0时,令g(x)0,得x1或x,若1,即a,由g(x)0,得x1或0x,由g(x)0,得x1;若1,即0a,由g(x)0,得x或0x1,由g(x)0,得1x;当1时,即a时,在(0,)上恒有g(x)0.综上可得:当a0时,g(x)在(0,1)上单调递增,在(1,)上单调递减;当0a时,g(x)在(0,1),上单调递增,在上单调递减;当a时,g(x)在(0,)上单调递增;当a时,g(x)在,(1,)上单调递增,在上单调递减1(2019南昌模拟)已知函数f(x)xsin x,x1,x2,且f(x1)f(x2),那么()Ax1x20 Bx1x20Cxx0 Dxx0D由f(x)xsin x,得f(x)sin xxcos xcos x(tan xx),当x时,f(x)0,即f(x)在上为增函数,又f(x)xsin(x)xsin xf(x),所以f(x)为偶函数,所以当f(x1)f(x2)时,有f(|x1|)f(|x2|),所以|x1|x2|,xx0,故选D.2设函数f(x)aln x,其中a为常数(1)若a0,求曲线yf(x)在点(1,f(1)处的切线方程;(2)讨论函数f(x)的单调性解(1)由题意知a0时,f(x),x(0,)此时f(x),可得f(1).又f(1)0,所以曲线yf(x)在(1,f(1)处的切线方程为x2y10.(2)函数f(x)的定义域为(0,)f(x).当a0时,f(x)0,函数f(x)在(0,)上递增当a0时,令g(x)ax2(2a2)xa,由于(2a2)24a24(2a1),当a时,0,f(x)0,函数f(x)在(0,)上递减当a时,0,g(x)0,f(x)0,函数f(x)在(0,)上递减当a0时,0.设x1,x2(x1x2)是函数g(x)的两个零点,则x1,x2.由x10,所以x(0,x1)时,g(x)0,f(x)0,函数f(x)递减;x(x1,x2)时,g(x)0,f(x)0,函数f(x)递增;x(x2,)时,g(x)0,f(x)0,函数f(x)递减综上可得:当a0时,函数f(x)在(0,)上递增;当a时,函数f(x)在(0,)上递减;当a0时,f(x)在,上递减,在上递增 8
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!