2019年电大高等数学基础形成性考核手册答案必考重点【精编打印版】.doc

上传人:good****022 文档编号:116533229 上传时间:2022-07-05 格式:DOC 页数:38 大小:2.98MB
返回 下载 相关 举报
2019年电大高等数学基础形成性考核手册答案必考重点【精编打印版】.doc_第1页
第1页 / 共38页
2019年电大高等数学基础形成性考核手册答案必考重点【精编打印版】.doc_第2页
第2页 / 共38页
2019年电大高等数学基础形成性考核手册答案必考重点【精编打印版】.doc_第3页
第3页 / 共38页
点击查看更多>>
资源描述
高等数学基础形考作业1答案第1章 函数第2章 极限与连续(一) 单项选择题下列各函数对中,(C)中的两个函数相等 A. , B. , C. , D. ,设函数的定义域为,则函数的图形关于(C)对称 A. 坐标原点 B. 轴 C. 轴 D. 下列函数中为奇函数是(B) A. B. C. D. 下列函数中为基本初等函数是(C) A. B. C. D. 下列极限存计算不正确的是(D) A. B. C. D. 当时,变量(C)是无穷小量 A. B. C. D. 若函数在点满足(A),则在点连续。 A. B. 在点的某个邻域内有定义 C. D. (二)填空题函数的定义域是已知函数,则 x2-x 若函数,在处连续,则e 函数的间断点是若,则当时,称为。(三)计算题设函数求:解:,求函数的定义域解:有意义,要求解得 则定义域为在半径为的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数解: A R O h E B C设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD2R直角三角形AOE中,利用勾股定理得则上底故求解:求解:求解:求解: 求解:求解:设函数讨论的连续性。解:分别对分段点处讨论连续性 (1)所以,即在处不连续(2)所以即在处连续由(1)(2)得在除点外均连续高等数学基础作业2答案:第3章 导数与微分(一)单项选择题 设且极限存在,则(C) A. B. C. D. cvx 设在可导,则(D) A. B. C. D. 设,则(A) A. B. C. D. 设,则(D) A. B. C. D. 下列结论中正确的是(C) A. 若在点有极限,则在点可导 B. 若在点连续,则在点可导 C. 若在点可导,则在点有极限 D. 若在点有极限,则在点连续(二)填空题 设函数,则0 设,则。 曲线在处的切线斜率是。 曲线在处的切线方程是。 设,则 设,则。(三)计算题 求下列函数的导数: 解: 解: 解: 解: 解: 解: 解: 解:求下列函数的导数:解:解: 解:解:解:解:解:解:解:在下列方程中,是由方程确定的函数,求:解: 解: 解: 解: 解: 解: 解: 解: 求下列函数的微分:(注:)解: 解: 解: 解: 求下列函数的二阶导数:解: 解: 解: 解: (四)证明题 设是可导的奇函数,试证是偶函数证:因为f(x)是奇函数 所以两边导数得:所以是偶函数。高等数学基础形考作业3答案:第4章 导数的应用(一)单项选择题 若函数满足条件(D),则存在,使得 A. 在内连续 B. 在内可导 C. 在内连续且可导 D. 在内连续,在内可导 函数的单调增加区间是(D) A. B. C. D. 函数在区间内满足(A) A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升 函数满足的点,一定是的(C) A. 间断点 B. 极值点 C. 驻点 D. 拐点设在内有连续的二阶导数,若满足( C ),则在取到极小值 A. B. C. D. 设在内有连续的二阶导数,且,则在此区间内是( A ) A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的 (二)填空题 设在内可导,且当时,当时,则是的 极小值 点 若函数在点可导,且是的极值点,则 0 函数的单调减少区间是 函数的单调增加区间是 若函数在内恒有,则在上的最大值是 函数的拐点是(三)计算题求函数的单调区间和极值解:令X1(1,5)5+00+y上升极大值32下降极小值0上升列表:极大值:极小值:求函数在区间内的极值点,并求最大值和最小值解:令:,列表:(0,1)1(1,3)+0上升极大值2下降 3.求曲线上的点,使其到点的距离最短解:,d为p到A点的距离,则:。4.圆柱体上底的中心到下底的边沿的距离为,问当底半径与高分别为多少时,圆柱体的体积最大?解:设园柱体半径为R,高为h,则体积5.一体积为V的圆柱体,问底半径与高各为多少时表面积最小?解:设园柱体半径为R,高为h,则体积 答:当 时表面积最大。6.欲做一个底为正方形,容积为62.5立方米的长方体开口容器,怎样做法用料最省?解:设底长为x,高为h。则:侧面积为:令答:当底连长为5米,高为2.5米时用料最省。(四)证明题当时,证明不等式证:在区间 其中,于是由上式可得当时,证明不等式证:高等数学基础形考作业4答案:第5章 不定积分第6章 定积分及其应用(一)单项选择题 若的一个原函数是,则(D) A. B. C. D. 下列等式成立的是(D) A B. C. D. 若,则(B) A. B. C. D. (B) A. B. C. D. 若,则(B)A. B. C. D. 下列无穷限积分收敛的是(D)A. B. C. D. (二)填空题函数的不定积分是。若函数与是同一函数的原函数,则与之间有关系式。若,则。3若无穷积分收敛,则。(三)计算题 (四)证明题证明:若在上可积并为奇函数,则证: 证毕证明:若在上可积并为偶函数,则证:高等数学(1)学习辅导(一)第一章 函数理解函数的概念;掌握函数中符号f ( )的含义;了解函数的两要素;会求函数的定义域及函数值;会判断两个函数是否相等。两个函数相等的充分必要条件是定义域相等且对应关系相同。了解函数的主要性质,即单调性、奇偶性、有界性和周期性。若对任意,有,则称为偶函数,偶函数的图形关于轴对称。若对任意,有,则称为奇函数,奇函数的图形关于原点对称。掌握奇偶函数的判别方法。掌握单调函数、有界函数及周期函数的图形特点。熟练掌握基本初等函数的解析表达式、定义域、主要性质和图形。基本初等函数是指以下几种类型: 常数函数: 幂函数: 指数函数: 对数函数: 三角函数: 反三角函数:了解复合函数、初等函数的概念,会把一个复合函数分解成较简单的函数。如函数可以分解,。分解后的函数前三个都是基本初等函数,而第四个函数是常数函数和幂函数的和。会列简单的应用问题的函数关系式。例题选解一、填空题设,则。解:设,则,得故。函数的定义域是。解:对函数的第一项,要求且,即且;对函数的第二项,要求,即。取公共部分,得函数定义域为。函数的定义域为,则的定义域是。解:要使有意义,必须使,由此得定义域为。函数的定义域为 。解:要使有意义,必须满足且,即成立,解不等式方程组,得出,故得出函数的定义域为。设,则函数的图形关于对称。解:的定义域为 ,且有即是偶函数,故图形关于轴对称。二、单项选择题下列各对函数中,()是相同的。A.;B.;C.;D.解:A中两函数的对应关系不同, , B, D三个选项中的每对函数的定义域都不同,所以A B, D都不是正确的选项;而选项C中的函数定义域相等,且对应关系相同,故选项C正确。设函数的定义域为,则函数的图形关于()对称。A.yx;B.x轴;C.y轴;D.坐标原点解:设,则对任意有即是奇函数,故图形关于原点对称。选项D正确。 3设函数的定义域是全体实数,则函数是()A.单调减函数; B.有界函数;C.偶函数; D.周期函数解:A, B, D三个选项都不一定满足。设,则对任意有即是偶函数,故选项C正确。函数( ) A.是奇函数; B. 是偶函数;C.既奇函数又是偶函数; D.是非奇非偶函数。解:利用奇偶函数的定义进行验证。 所以B正确。若函数,则( ) A.; B. ;C.; D. 。解:因为所以则,故选项B正确。第二章 极限与连续知道数列极限的“”定义;了解函数极限的描述性定义。理解无穷小量的概念;了解无穷小量的运算性质及其与无穷大量的关系;知道无穷小量的比较。无穷小量的运算性质主要有: 有限个无穷小量的代数和是无穷小量; 有限个无穷小量的乘积是无穷小量; 无穷小量和有界变量的乘积是无穷小量。熟练掌握极限的计算方法:包括极限的四则运算法则,消去极限式中的不定因子,利用无穷小量的运算性质,有理化根式,两个重要极限,函数的连续性等方法。求极限有几种典型的类型(1)(2)(3)熟练掌握两个重要极限:(或)重要极限的一般形式:(或)利用两个重要极限求极限,往往需要作适当的变换,将所求极限的函数变形为重要极限或重要极限的扩展形式,再利用重要极限的结论和极限的四则运算法则,如理解函数连续性的定义;会判断函数在一点的连续性;会求函数的连续区间;了解函数间断点的概念;会对函数的间断点进行分类。间断点的分类:已知点是的间断点,若在点的左、右极限都存在,则称为的第一类间断点;若在点的左、右极限有一个不存在,则称为的第二类间断点。理解连续函数的和、差、积、商(分母不为0)及复合仍是连续函数,初等函数在其定义域内连续的结论,知道闭区间上连续函数的几个结论。典型例题解析一、填空题 极限。解:注意:(无穷小量乘以有界变量等于无穷小量),其中=1是第一个重要极限。函数的间断点是。解:由是分段函数,是的分段点,考虑函数在处的连续性。因为 所以函数在处是间断的,又在和都是连续的,故函数的间断点是。设,则。解:,故函数的单调增加区间是。二、单项选择题函数在点处()A.有定义且有极限; B.无定义但有极限;C.有定义但无极限; D.无定义且无极限解:在点处没有定义,但(无穷小量有界变量=无穷小量)故选项B正确。下列函数在指定的变化过程中,()是无穷小量。A.; B.;C. ;D.解:无穷小量乘以有界变量仍为无穷小量,所以而A, C, D三个选项中的极限都不为0,故选项B正确。 三、计算应用题计算下列极限: (4) 解: = 题目所给极限式分子的最高次项为分母的最高次项为,由此得 (4)当时,分子、分母的极限均为0,所以不能用极限的除法法则。求解时先有理化根式在利用除法法则和第一个重要极限计算。 =2.设函数 问(1)为何值时,在处有极限存在?(2)为何值时,在处连续?解:(1)要在处有极限存在,即要成立。因为所以,当时,有成立,即时,函数在处有极限存在,又因为函数在某点处有极限与在该点处是否有定义无关,所以此时可以取任意值。(2)依函数连续的定义知,函数在某点处连续的充要条件是 于是有,即时函数在处连续。第三章 导数与微分 导数与微分这一章是我们课程的学习重点之一。在学习的时候要侧重以下几点:理解导数的概念;了解导数的几何意义;会求曲线的切线和法线;会用定义计算简单函数的导数;知道可导与连续的关系。在点处可导是指极限存在,且该点处的导数就是这个极限的值。导数的定义式还可写成极限 函数在点处的导数的几何意义是曲线上点处切线的斜率。曲线在点处的切线方程为函数在点可导,则在点连续。反之则不然,函数在点连续,在点不一定可导。了解微分的概念;知道一阶微分形式不变性。熟记导数基本公式,熟练掌握下列求导方法(1)导数的四则运算法则(2)复合函数求导法则(3)隐函数求导方法(4)对数求导方法(5)参数表示的函数的求导法正确的采用求导方法有助于我们的导数计算,如一般当函数表达式中有乘除关系或根式时,求导时采用取对数求导法,例如函数,求。在求导时直接用导数的除法法则是可以的,但是计算时会麻烦一些,而且容易出错。如果我们把函数先进行变形,即 再用导数的加法法则计算其导数,于是有 这样计算不但简单而且不易出错。又例如函数 ,求。显然直接求导比较麻烦,可采用取对数求导法,将上式两端取对数得两端求导得整理后便可得若函数由参数方程的形式给出,则有导数公式能够熟练地利用导数基本公式和导数的四则运算法则、复合函数的求导法则计算函数的导数,能够利用隐函数求导法,取对数求导法,参数表示的函数的求函数的导数。熟练掌握微分运算法则微分四则运算法则与导数四则运算法则类似 一阶微分形式的不变性微分的计算可以归结为导数的计算,但要注意它们之间的不同之处,即函数的微分等于函数的导数与自变量微分的乘积。了解高阶导数的概念;会求显函数的二阶导数。函数的高阶高数即为函数的导数的导数。由此要求函数的二阶导数就要先求函数的一阶导数。要求函数的阶导数就要先求函数的阶导数。第三章 导数与微分典型例题选解一、填空题设函数在邻近有定义,且,则。解: 故应填1。曲线在点(1,1)处切线的斜率是。解:由导数的几何意义知,曲线在处切线的斜率是,即为函数在该点处的导数,于是故应填。设,则。解:,故故应填二、单项选择题设函数,则()。A.;B.2; C.4;D不存在解:因为,且,所以,即C正确。设,则()。A.;B. ;C. ;D. 解:先要求出,再求。因为,由此得,所以即选项D正确。 3设函数,则()A.0; B.1;C.2; D. 解:因为,其中的三项当时为0,所以故选项C正确。 4曲线在点()处的切线斜率等于0。A.;B.;C.;D.解:,令得。而,故选项C正确。5 ,则()。A.;B.;C.;D.解:故选项C正确。三、计算应用题设,求解:由导数四则运算法则和复合函数求导法则由此得设,其中为可微函数,求。解 = =求复合函数的导数时,要先搞清函数的复合构成,即复合函数是由哪些基本初等函数复合而成的,特别要分清复合函数的复合层次,然后由外层开始,逐层使用复合函数求导公式,一层一层求导,关键是不要遗漏,最后化简。3.设函数由方程确定,求。解:方法一:等式两端对求导得整理得方法二:由一阶微分形式不变性和微分法则,原式两端求微分得左端右端由此得整理得4.设函数由参数方程确定,求。 解:由参数求导法5设,求。解 第四章 导数的应用典型例题一、填空题1.函数的单调增加区间是.解:,当时.故函数的单调增加区间是.2.极限.解:由洛必达法则3.函数的极小值点为 。解:,令,解得驻点,又时,;时,所以是函数的极小值点。二、单选题1.函数 在区间上是( )A) 单调增加 B)单调减少 C)先单调增加再单调减少 D)先单调减少再单调增加解:选择D,当时,;当时,;所以在区间上函数先单调减少再单调增加。2. 若函数满足条件( ),则在内至少存在一点,使得成立。 A)在内连续; B)在内可导; C)在内连续,在内可导; D)在内连续,在内可导。 解:选择D。 由拉格朗日定理条件,函数在内连续,在内可导,所以选择D正确。3. 满足方程的点是函数的( )。A)极值点 B)拐点C)驻点 D)间断点解:选择C。依驻点定义,函数的驻点是使函数一阶导数为零的点。4.设函数在内连续,且,则函数在处( )。A)取得极大值 B)取得极小值C)一定有拐点 D)可能有极值,也可能有拐点解:选择D函数的一阶导数为零,说明可能是函数的极值点;函数的二阶导数为零,说明可能是函数的拐点,所以选择D。三、解答题 1.计算题求函数的单调区间。解:函数的定义区间为,由于 令,解得,这样可以将定义区间分成和两个区间来讨论。当时,;当是,。由此得出,函数在内单调递减,在内单调增加。 2.应用题欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法所用材料最省?解:设底边边长为,高为,所用材料为且 令得,且因为,所以为最小值.此时。于是以6米为底边长,3米为高做长方体容器用料最省。3证明题:当时,证明不等式 证 设函数,因为在上连续可导,所以在上满足拉格朗日中值定理条件,有公式可得 其中,即 又由于,有故有 两边同时取以为底的指数,有即 所以当时,有不等式 成立.第5章学习辅导(2)典型例题解析一、填空题曲线在任意一点处的切线斜率为,且曲线过点,则曲线方程为。解:,即曲线方程为。将点代入得,所求曲线方程为已知函数的一个原函数是,则。解: 已知是的一个原函数,那么。解:用凑微分法 二、单项选择题设,则()。A. ; B. ;C. ; D. 解:因故选项A正确 设是的一个原函数,则等式()成立。A.;B.;C.;D.解:正确的等式关系是故选项D正确 设是的一个原函数,则()。A. ; B. ;C. ; D. 解:由复合函数求导法则得 故选项C正确三、计算题计算下列积分:解:利用第一换元法 利用第二换元法,设, 计算下列积分:解:利用分部积分法 利用分部积分法 高等数学(1)第六章学习辅导 综合练习题(一)单项选择题 (1)下列式子中,正确的是( )。A. B. C. D. (2). 下列式子中,正确的是( ) A. B. C. D. (3) 下列广义积分收敛的是( )。 A .B. C. D. (4) 若是上的连续偶函数,则 。A. B 0C D (5) 若与是上的两条光滑曲线,则由这两条曲线及直线所围图形的面积( ).A. B. C. D. 答案:(1) A;(2)D; (3)D; (4)C; (5)A。 解:(1)根据定积分定义及性质可知 A正确。 而 B不正确。在(0,1)区间内 C 不正确。 根据定积分定义可知,定积分值与函数及定积分的上、下限有关,而与积分变量的选取无关。 故D不正确。 (2) 由变上限的定积分的概念知 A、C不正确。 由定积分定义知 B不正确。 D正确。 (3) A不正确。 B。不正确。 C。不正确。 DD正确(4)由课本344页 (642)和345页(643)知C。正确。(5)所围图形的面积始终是在上面的函数减去在下面的函数 A正确。 (二) 填空题(1) (2) (3) 在区间上,曲线和轴所围图形的面积为_。 (4) (5) (a0 p0 )答案:解:(1) (2) (2) 所围图形的面积S=(3) 由定积分的几何意义知: 定积分的值等于(4) y= 所围图形的面积(5) p1时 无穷积分发散。(三)计算下列定积分(1)(2)(3) (4) (5)答案:(1)(2)(3) (4) (5) (四)定积分应用 求由曲线,及直线所围平面图形的面积 x解:画草图 求交点 由 y=x, xy=1得x=1 .y=1y 2 y=2 y=x 0 xy=1 第七章综合练习题(一)单项选择题 1、若( )成立,则级数发散,其中 表示此级数的部分和。A、; B、单调上升;C、 D、不存在2、当条件( )成立时,级数一定发散。A、发散且收敛; B、发散;C、发散; D、和都发散。3、若正项级数收敛,则( )收敛。A、 B、C 、 D、4、若两个正项级数、满足,则结论( ),是正确的。A、发散则发散; B、收敛则收敛;C、发散则收敛; D、收敛则发散。5、 若f(x)= , 则 = ( )。A、 B 、 C D、答案:1、D 2、A 3、B 4、A 5、C(二)填空题1、 当_时,几何级数收敛。2、 级数是_级数。3、 若级数收敛,则级数_。4、 指数函数f(x)= 展成 x的幂级数为_。5、 若幂级数的收敛区间为(9 ,9 ),则幂级数的收敛区间为_。答案:1、1 则由比值判别法可知发散。 由于是交错级数,且=及,由莱布尼兹判别法知级数收敛。2、 求下列幂级数的收敛半径 解: 因此收敛半径R=1, 令 得幂级数可知的收敛半径为4 ,所以原幂级数的收敛半径第八章综合练习题及参考答案(一)单项选择题 1、 下列阶数最高的微分方程是 ( )。A、; B、;C、 D、2、下列一阶微分方程中为可分离变量的微分方程是( )。A、; B、C、 D、3、微分方程的通解为( )。A、 B、C 、 D、4、微分方程的通解为( )。A、; B、C、; D、5、微分方程的特解应设为( )。A、 B 、 C D、答案:1、A 2、C 3、C 4、B 5、D(二)填空题6、 一阶线性微分方程的通解公式为_。7、 二阶线性微分方程的特征根为_。8、 二阶线性微分方程的通解中含有_独立的任意常数。9、 二阶微分方程的通解为_。10、 若是二阶线性非齐次微分方程的一个特解,为其相应的齐次微分方程的通解,则非齐次微分方程的通解为_。答案:1、 2、 3、两个 4、 5、 (三)计算题3、 求一阶微分方程的满足的特解 求一阶微分方程的满足的特解 解:微分方程变为,两边积分得方程的通解为 由条件得, 故微分方程的的特解方法一 由一阶线性微分方程的通解公式得 由条件得,故微分方程的的特解 方法二 由微分方程可得,两边积分得方程的通解为 由条件得,故微分方程的的特解2、求微分方程的通解解:原方程对应的齐次方程的特征方程为 特征根为, 故齐次微分方程的通解(其中为任意常数) 设原方程的一个特解应为,代入方程得得 故微分方程的通解(其中为任意常数) 求微分方程的通解解:原方程对应的齐次方程的特征方程为 得特征根为, 故齐次微分方程的通解(其中为任意常数) 设原方程的一个特解应为,代入方程得 故微分方程的通解(其中为任意常数)高等数学基础综合练习题解答一填空题1函数的定义域为 。2函数的定义域是 。3函数的定义域是 。4设,则 。解:设,则且原式即亦即4若函数在处连续,则= 。5曲线在处的切线方程为 。曲线在点处的切线方程为解:,6. 函数的连续区间为 。初等函数在其定义区间连续。且7曲线在点处的切线方程为 。 8. 设函数可导,则 。解:9.(判断单调性、凹凸性)曲线在区间内是 单调递减且凹 。解:10设,则 。解:,11 0 。解:是奇函数;是偶函数,由于偶+偶=偶,则是偶函数,因为奇偶奇,所以是奇函数,是对称区间奇函数在对称区间上的积分为零12 。解:是奇函数(奇偶奇),故;而是偶函数,故13设,则 。解: 14已知,则 。解:15设为的原函数,那么 。分析:为的原函数,解:16设的一个原函数是, 则 。解:的一个原函数为17,那么 。解:18_。解:19设,则 。解:20= 。解:二选择题1 下列函数中( B )的图像关于坐标原点对称。A B C D 规律:(1)1奇偶函数定义:;(2)常见的偶函数:常见的奇函数:常见的非奇非偶函数:;(3)奇偶函数运算性质:奇奇=奇;奇偶=非;偶偶=偶;奇奇=偶;奇偶=奇;偶偶=偶;(4)奇函数图像关于原点对称;偶函数图像关于轴对称。解:A非奇非偶; B奇偶=奇(原点); C奇奇=偶(轴); D非奇非偶2下列函数中( B )不是奇函数。A; B; C; D 解:A奇函数(定义); B非奇非偶(定义);C奇函数(奇偶);D奇函数(定义)3下列函数中,其图像关于轴对称的是( A )。A B C D解:A偶函数(轴); B非奇非偶(定义);C奇函数(常见);D非奇非偶(定义)4下列极限正确的是( B )。A B C. D 解:A错。,;B正确。分子分母最高次幂前的系数之比;C错。,即是无穷小,即是有界变量,;D错。第二个重要极限应为或,其类型为。5当时,( D )为无穷小量。A B C D 解:A ;B, 不存在;C,;D,。6. 下列等式中,成立的是( B )。A B C D 解:A错,正确的应为 B。 正确,即C错,正确的应为 D错,正确的应为7设在点可微,且,则下列结论成立的是( C )。A 是的极小值点 B 是的极大值点 ;C是的驻点; D 是的最大值点;解:驻点定义:设在点可微,且,则是的驻点。驻点为可能的极值点。8函数,则 ( D )。A 3 ; B ; C ; D 解一:解二: 9设,则( B )。A ; B ; C ; D 不存在10曲线在区间内是( A )。A下降且凹 B上升且凹 C下降且凸 D 上升且凸解:11曲线在内是( B )。A 下降且凹; B上升且凹; C下降且凸; D上升且凸解:12曲线在点处的法线方程为( B )。A.;B.;CD.规律:曲线在x=处的法线方程为解:,故法线方程为B;13下列结论中正确的是( C )。A函数的驻点一定是极值点 B函数的极值点一定是驻点C函数一阶导数为的点一定是驻点 D函数的极值点处导数必为解:驻点定义:设在点可微,且,则是的驻点。驻点为可能的极值点。14设函数,则( A )。A; B; C; D 解:15当函数不恒为0,为常数时,下列等式不成立的是( B )。A. B. C. D. 解:A. 成立,为不定积分的性质;B. 不成立,常数,而常数的导数为零;C. 成立,为不定积分的性质; D. 成立,为牛顿莱布尼兹公式。16设函数的原函数为,则( A )。A ; B; C; D解:函数的原函数为,17下列无穷积分为收敛的是(B)。A. B. C.D.规律: 、发散 解:A.;B.,收敛; C.,发散; D. ,发散18下列无穷积分为收敛的是(C)。A. B.C. D. 解:A. 发散;B. 发散;C. 收敛;D. 发散;三计算题1、求极限 2、求极限解: 解: 原题 原题3、求极限解:,原题=4、求极限解:,原题5、求极限解:,原题6、求极限解:,原题7、设函数,求解:8、设函数,求。解:9、设函数,求。解: 10、设函数,求。 11、设函数,求。解: 12、计算不定积分 2 0 + + 13、计算不定积分 解: 1 0 四、应用题1、 要做一个有底无盖的圆柱体容器,已知容器的容积为4立方米,试问如何选取底半径和高的尺寸,才能使所用材料最省。解:设圆柱体底半径为,高为,则体积材料最省即表面积最小表面积,令0,得唯一驻点所以当底半径为米,此时高为米时表面积最小即材料最省。2、 要做一个有底无盖的圆柱体容器,已知容器的容积为16立方米,底面单位面积的造价为10元/平方米,侧面单位面积的造价为20元/平方米,试问如何选取底半径和高的尺寸,才能使建造费用最省。解:设圆柱体底半径为,高为, 则体积 且造价函数令,得唯一驻点所以当底半径为米,此时高为米时造价最低。3、要用同一种材料建造一个有底无盖的容积为108立方米的圆柱体容器,试问如何选取底半径和高的尺寸,才能使建造费用最省。解:要使建造费用最省,就是在体积不变的情况下,使圆柱体的表面积最小。设圆柱体底半径为,高为,则体积则圆柱体仓库的表面积为,令0,得唯一驻点,所以当底半径为米,此时高为米时表面积最小即建造费用最省。4、在半径为8的半圆和直径围成的半圆内内接一个长方形(如图),为使长方形的面积最大,该长方形的底长和高各为多少。解:设长方形的底边长为,高为,则 8 面积 令,得唯一驻点所以当底边长为米,此时高为米时面积最大。5、在半径为8的圆内内接一个长方形,为使长方形的面积最大,该长方形的底长和高各为多少。解:设长方形的底边长为,高为,则面积令,得唯一驻点所以当底边长为米,此时高为米时面积最大。6、求由抛物线与直线所围的面积。解:抛物线与直线的交点为,面积=7、求由抛物线与直线所围的面积。解:抛物线与直线的交点为,面积8、求由抛物线与直线所围的面积。解:抛物线与直线的交点为,面积9、求由抛物线与直线所围的面积。解:抛物线与直线的交点为,面积10、求由抛物线与直线所围的面积。解:抛物线与直线的交点为,面积-1-1整理范文,仅供参考欢迎您下载我们的文档资料可以编辑修改使用致力于合同简历、论文写作、PPT设计、计划书、策划案、学习课件、各类模板等方方面面,打造全网一站式需求觉得好可以点个赞哦如果没有找到合适的文档资料,可以留言告知我们哦38
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 其他分类 > 社科论文


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!