资源描述
课时作业(六)一、选择题1下列函数中,不具有奇偶性的函数是()AyexexBylgCycos2x Dysinxcosx答案D2(2020山东临沂)设f(x)是R上的任意函数,则下列叙述正确的是()Af(x)f(x)是奇函数 Bf(x)|f(x)|是奇函数Cf(x)f(x)是偶函数 Df(x)f(x)是偶函数答案D3已知f(x)为奇函数,当x0,f(x)x(1x),那么x0,f(x)等于()Ax(1x) Bx(1x)Cx(1x) Dx(1x)答案B解析当x0,f(x)(x)(1x)又f(x)f(x),f(x)x(1x)4若f(x)ax2bxc(a0)是偶函数,则g(x)ax3bx2cx是()A奇函数 B偶函数C非奇非偶函数 D既奇又偶函数答案A解析由f(x)是偶函数知b0,g(x)ax3cx是奇函数5(2020山东卷)设f(x)为定义在R上的奇函数当x0时,f(x)2x2xb(b为常数),则f(1)()A3 B1C1 D3答案D解析令x0,则x0,所以f(x)2x2xb,又因为f(x)在R上是奇函数,所以f(x)f(x)且f(0)0,即b1,f(x)2x2x1,所以f(1)2213,故选D.6(2020深圳)设f(x),又记f1(x)f(x),fk1(x)f(fk(x),k1,2,则f2020(x)()A BxC. D.答案C解析由题得f2(x)f(),f3(x)f(),f4(x)f()x,f5(x)f1(x),其周期为4,所以f2020(x)f3(x).7(2020新课标全国卷)设偶函数f(x)满足f(x)x38(x0),则x|f(x2)0()Ax|x4 Bx|x4Cx|x6 Dx|x2答案B解析当x0,f(x)(x)38x38,又f(x)是偶函数,f(x)f(x)x38,f(x).f(x2),或,解得x4或x0.故选B.二、填空题8设函数f(x)(x1)(xa)为偶函数,则a_.答案1解析f(x)x2(a1)xa.f(x)为偶函数,a10,a1.9设f(x)ax5bx3cx7(其中a,b,c为常数,xR),若f(2020)17,则f(2020)_.答案31解析f(2020)a20205b20203c20207f(2020)a(2020)5b(2020)3c(2020)7f(2020)f(2020)14,f(2020)141731.10函数f(x)x3sinx1的图象关于_点对称答案(0,1)解析f(x)的图象是由yx3sin x的图象向上平移一个单位得到的11已知f(x)是定义在R上的偶函数,且对任意的xR,总有f(x2)f(x)成立,则f(19)_.答案0解析依题意得f(x4)f(x2)f(x),即f(x)是以4为周期的函数,因此有f(19)f(451)f(1)f(1),且f(12)f(1),即f(1)f(1),f(1)0,因此f(19)0.12定义在(,)上的函数yf(x)在(,2)上是增函数,且函数yf(x2)为偶函数,则f(1),f(4),f(5)的大小关系是_答案f(5)f(1)f(4)解析yf(x2)为偶函数yf(x)关于x2对称又yf(x)在(,2)上为增函数yf(x)在(2,)上为减函数,而f(1)f(5)f(5)f(1)f(4)13(2020山东潍坊)定义在R上的偶函数f(x)满足f(x1)f(x),且在1,0上是增函数,给出下列关于f(x)的判断:f(x)是周期函数;f(x)关于直线x1对称;f(x)在0,1上是增函数;f(x)在1,2上是减函数;f(2)f(0),其中正确的序号是_答案解析由f(x1)f(x)得f(x2)f(x1)f(x),f(x)是周期为2的函数,正确,f(x)关于直线x1对称,正确,f(x)为偶函数,在1,0上是增函数,f(x)在0,1上是减函数,1,2上为增函数,f(2)f(0)因此、错误,正确综上,正确三、解答题14已知f(x)是偶函数,g(x)是奇函数,且f(x)g(x)x2x2,求f(x)、g(x)的解析式答案f(x)x22,g(x)x解析f(x)g(x)x2x2.f(x)g(x)(x)2(x)2.又f(x)为偶函数,g(x)为奇函数,f(x)g(x)x2x2.由解得f(x)x22,g(x)x.15已知f(x)是定义在R上的奇函数,且函数f(x)在0,1)上单调递减,并满足f(2x)f(x),若方程f(x)1在0,1)上有实数根,求该方程在区间1,3上的所有实根之和答案2解析由f(2x)f(x)可知函数f(x)的图象关于直线x1对称,又因为函数f(x)是奇函数,则f(x)在(1,1)上单调递减,根据函数f(x)的单调性,方程f(x)1在(1,1)上有唯一的实根,根据函数f(x)的对称性,方程f(x)1在(1,3)上有唯一的实根,这两个实根关于直线x1对称,故两根之和等于2.16已知定义域为R的函数f(x)是奇函数()求a,b的值;()若对任意的tR,不等式f(t22t)f(2t2k)0恒成立,求k的取值范围答案(1)a2,b1(2)k解析()因为f(x)是奇函数,所以f(0)0,即0b1f(x)又由f(1)f(1)知a2.()解法一由()知f(x),易知f(x)在(,)上为减函数又因f(x)是奇函数,从而不等式:f(t22t)f(2t2k)0等价于f(t22t)k2t2.即对一切tR有:3t22tk0,从而判别式412k0k解法二由()知f(x).又由题设条件得:0,即:(22t2k12)(12t22t)(2t22t12)(122t2k)1,因底数21,故:3t22tk0上式对一切tR均成立,从而判别式412k0k
展开阅读全文