游戏的公平性.doc

上传人:xin****828 文档编号:6622473 上传时间:2020-03-01 格式:DOC 页数:22 大小:223.50KB
返回 下载 相关 举报
游戏的公平性.doc_第1页
第1页 / 共22页
游戏的公平性.doc_第2页
第2页 / 共22页
游戏的公平性.doc_第3页
第3页 / 共22页
点击查看更多>>
资源描述
一选择题(共10小题)1(2014春淮阴区校级月考)小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A此规则有利于小玲B此规则有利于小丽C此规则对两人是公平的D无法判断【分析】抛掷两枚均匀的正方体骰子总共有36种情况,一个奇数与一个偶数的和是奇数,故其中和为奇数的情况有33+33=18,计算出奇数的概率和不是偶数就是奇数,再计算偶数的概率【解答】解:抛掷两枚均匀的正方体骰子,掷得点数之和为偶数的概率是,点数之和为奇数的概率是,所以规则对两人是公平的,故选C【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平2(2015秋成都期末)甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A游戏的规则由甲方确定B游戏的规则由乙方确定C游戏的规则由甲乙双方商定D游戏双方要各有50%赢的机会【分析】根据游戏是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏是否公平的取决于游戏双方要各有50%赢的机会,A游戏的规则由甲方确定,故此选项错误;B游戏的规则由乙方确定,故此选项错误;C游戏的规则由甲乙双方商定,故此选项错误;D游戏双方要各有50%赢的机会,故此选项正确故选:D【点评】此题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平3(2013广东模拟)某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜则当x=()时,游戏对甲乙双方公平A3B4C5D6【分析】根据题意表示出摸出是绿球与黑球的概率,令两概率相等求出x的值即可【解答】解:根据题意得:=,即2x=20x2x,解得:x=4故选B【点评】此题考查了游戏的公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平4(2012春晋江市期末)小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A游戏对小明有利B游戏对小白有利C这是一个公平游戏D不能判断对谁有利【分析】根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇,它们的和为奇,奇,偶,偶;由此可得:两人获胜的概率,进而得出答案【解答】解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此和为奇数或为偶数概率都为;所以这是一个公平游戏故选:C【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比5(2011安徽模拟)把五张大小相同且分别写1、2、3、4、5的卡片放在一个暗箱中,先由甲随机从里面无放回地抽取两张,并记下两个数字之和后把卡片再放入暗箱,再由乙从里面无放回地抽取两张,并记下两个数字之和,若数字和为偶数则甲胜,若数字和为奇数则乙胜,则有()A两者取胜的概率相同B甲胜的概率为0.6C乙胜的概率为0.6D乙胜的概率为0.7【分析】列举出所有情况,看抽取的两张卡片上的数字之和等于奇偶的情况数占总情况数的多少即可【解答】解:根据五张大小相同且分别写1、2、3、4、5的卡片放在一个暗箱中,先由甲随机从里面无放回地抽取两张,两数之和为偶数的概率为:=,数字和为奇数的概率为:,乙胜的概率为0.6,故选:C【点评】此题主要考查了概率的求法;得到所求的情况数的解决本题的关键;用到的知识点为:概率=所求情况数与总情况数之比6(2011春肃州区校级期中)口袋里有相同的2个红球、4个白球和6个黑球,从口袋里摸出2个球,若两个都是红色,则甲胜;若两个都是黑球,则乙胜谁获胜的概率大()A甲B乙C甲乙一样大D不能确定【分析】列举出符合题意的各种情况的个数,再根据概率公式解答比较即可【解答】解:从口袋里摸出2个球,共有132种可能,两个都是红色的情况有1种,甲胜的概率为;两个都是黑球的情况有30种,乙胜的概率为,乙甲故选B【点评】本题主要考查了游戏的公平性,用到的知识点为:可能性=所求情况数与总情况数之比7(2005泉州质检)一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是()A公平的B不公平的C先摸者赢的可能性大D后摸者赢的可能性大【分析】每个人摸到黑球的概率均为,所以游戏公平【解答】解:一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,三个人摸到每种球的概率均相等,故这个游戏是公平的故选A【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比8(2005春昭阳区校级期中)下列游戏公平的是()A掷一个硬币两次,出现两次正面甲胜,出现两次反面乙胜B掷一个硬币两次,出现一次正面甲胜,出现两次反面乙胜C掷一个硬币两次,至少出现一次正面甲胜,出现一次反面一次正面乙胜D掷一个硬币两次,出现相同面甲胜,至少出现一次正面乙胜【分析】首先利用列举法求得掷一个硬币两次,等可能的结果;然后分别求得各情况下甲胜与乙胜的概率,比较概率是否相等,即可得出结论【解答】解:掷一个硬币两次,可能的结果有:正正,正反,反正,反反,A、P(甲胜)=,P(乙胜)=,P(甲胜)=P(乙胜),故本选项公平;B、P(甲胜)=,P(乙胜)=,P(甲胜)P(乙胜),故本选项不公平;C、P(甲胜)=,P(乙胜)=,P(甲胜)P(乙胜),故本选项不公平;D、P(甲胜)=,P(乙胜)=,P(甲胜)P(乙胜),故本选项不公平故选A【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平9甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方()A公平B对甲有利C对乙有利D无法确定公平性【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,同时掷两枚相同的硬币,同面朝上的概率为50%,异面朝上为50%,所以游戏公平【解答】解:同时掷两枚相同的硬币,出现的情况如下:(正,正),(反,正),(正,反),(反,反)共四种情况所以P(同面朝上)=50%,P(异面朝上)=50%;所以游戏公平故选A【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比10桌上放着25粒棋子,小明和小刚两人轮流拿,一次可以拿走1粒棋子、2粒棋子或者3粒棋子,但不可以不拿,拿到最后一粒棋子的算输,该游戏()A公平B不公平C对小明有利D不确定【分析】由于1、2、3的最小公倍数为6,则两人轮流拿走棋子的总数为6的倍数,所以最后总是剩下一粒棋子,这样先拿的人输,后拿的人赢【解答】解:因为1、2、3的最小公倍数为6,所以小明和小刚两人轮流拿走1粒棋子、2粒棋子或者3粒棋子的总数为6的倍数,而25=46+1,则小明和小刚两人轮流拿后,最后总是剩下一粒棋子,所以先拿的那个人必定要拿最后一粒棋子,则它必输,即先拿的人输,后拿的人赢,所以这个游戏不公平故选B【点评】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平二填空题(共9小题)11(2014春涟水县校级月考)小明和小红用摸球游戏决定谁去看电影,袋中有2个红球和1个白球(除颜色外都相同),摸到红球小明去看,摸到白球小红去看,游戏对双方是不公平 (填“公平”或不公平)的【分析】利用概率公式分别求出获胜概率,进而得出游戏公平性即可【解答】解:袋中有2个红球和1个白球(除颜色外都相同),摸到红球的概率为:,摸到白球的概率为:,游戏规则不公平故答案为:不公平【点评】此题主要考查了游戏公平性,利用概率公式求出是解题关键12(2014春海阳市期中)甲、乙两人玩游戏,把一个均匀的小正方体的每个面上分别标上数字1,2,3,4,5,6,任意掷出小正方体后,若朝上的数字比3大,则甲胜;若朝上的数字比3小,则乙胜,你认为这个游戏对甲、乙双方公平吗?不公平【分析】运用概率公式计算出相应概率,比较找到最大的概率即可【解答】解:掷得朝上的数字比3大可能性有:4,5,6,掷得朝上的数字比3大的概率为:=,朝上的数字比3小的可能性有:1,2,掷得朝上的数字比3小的概率为:=,这个游戏对甲、乙双方不公平故答案为:不公平【点评】此题主要考查了游戏公平性,有关可能性大小的问题;用到的知识点为:可能性相等,包含的情况数相等13(2013秋湖里区校级期中)甲乙两人用2张红心和1张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:不公平【分析】分别求得两人获胜的概率后比较,若概率相等则公平,否则就不公平【解答】解:列表得: 红1红2黑红1红1红1红1红2红1黑红2红2红1红2红2红2黑黑黑红1黑红2黑黑共9种情况,同一花色的有5种情况,花色不同的有4种情况,甲获胜的概率为:,乙获胜的概率为,故不公平,故答案为:不公平【点评】本题考查了游戏的公平性,正确地列表或树状图是解决此类问题的关键,难度不大14(2011春宿豫区期末)小丽与小华做硬币游戏,任意掷一枚均匀的硬币两次,游戏规定:如果两次朝上的面不同,那么小丽获胜;如果两次朝上的面相同,那么小华获胜你认为这样的游戏公平吗公平(填“公平”,“不公平”)【分析】根据游戏规则可知:任意掷一枚均匀的硬币两次,有4种情况;两次朝上的面不同,有2种;两次朝上的面相同,也有2种;故小丽与小华取胜的概率相等,故这个游戏公平【解答】解:任意掷一枚均匀的硬币两次,朝上的情况有正正、反反、正反、反正四种情况,所以两次朝上的面不同或两次朝上的面相同的概率相等,即游戏公平【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比15(2009岳阳一模)如图,小明和小丁做游戏,分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分,当所转到的数字之积为偶数时,小丁得1分,这个游戏公平吗?公平【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等【解答】解:根据题意分析可得:共6种情况;为奇数的2种,为偶数的4种故P(奇数)=P(偶数)=2=1这个游戏对双方是公平的 转盘2转盘112311232246故答案为:公平【点评】此题考查的是游戏公平性的判断判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比16(2009春梅列区校级期中)如图,小明用转盘设计了一种游戏,随意转动转盘,转盘停止转动后,如果指针指向红色,则甲胜;如果指针指向黄色,则乙胜你认为这个游戏不公平(填“公平”或“不公平”)【分析】看转盘的红色区域和黄色区域占整体的多少,再进行比较即可得出答案;【解答】解:指针指向红色的概率是:=,指针指向黄色的概率是:,所以甲胜的概率大,这个游戏不公平;故答案为:不公平【点评】此题考查了游戏的公平性,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平注意转盘应均等分17(2008雅安)甲、乙两人玩抽扑克牌游戏,他们准备了13张从A(1)到K的牌,并规定甲抽到10至K的牌,那么算甲胜,如果抽到的是10以下的牌,则算乙胜,这种游戏对甲乙来说不公平(填“公平”或“不公平”)【分析】首先利用概率公式求得甲胜与乙胜的概率,比较概率的大小,即可得到游戏对甲乙来说是否公平【解答】解:他们准备了13张从A(1)到K的牌,共有13种等可能的结果,规定甲抽到10至K的牌,共有4种情况,抽到的是10以下的牌,共有9种情况,P(甲胜)=,P(乙胜)=,P(甲胜)P(乙胜),游戏对甲乙来说不公平故答案为:不公平【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平18芳芳和明明要玩一个游戏:两人轮流在一个正方形硬纸上放同样大小的硬币,规则是:每人每次只能放一枚,让硬币平躺在桌面上,任何两枚硬币不能重合谁放完最后一枚,使得对方再也找不到空地放下一枚硬币的时候,谁就赢了如果芳芳走第一步,她应该放在哪里才可能稳操胜券?请说明你的理由芳芳的第一步应放正方形硬纸板的中心位置这时,明明放一枚硬币,芳芳总可以在硬纸板上放一枚硬币,使它与明明的硬币关于中心对称,直到明明无处可放,芳芳就赢了【分析】根据中心对称的知识,争取先放,并把第1枚硬币放在桌面的对称中心上,根据对称性可作出解释【解答】解:芳芳的第一步应放正方形硬纸板的中心位置这时,明明放一枚硬币,芳芳总可以在硬纸板上放一枚硬币,使它与明明的硬币关于中心对称,直到明明无处可放,芳芳就赢了【点评】本题考查中心对称的性质的运用,比较新颖,注意掌握基本性质,然后才能做到灵活运用19小明和小华做掷硬币的游戏将同一枚硬币各掷三次,小明掷时,朝上的面都是“国徽”,才获胜;小华掷时,朝上的面只要一次是“国徽”,即获胜获胜可能性大的是小华【分析】首先列举出所以出现的情况,然后根据所有出现的可能,分别计算每个人能赢的概率,即可解答【解答】解:将同一枚硬币各掷三次,可能出现的情况为:(用1表示正,0表示反)1,1,1;1,1,0;1,0,0;1,0,1;0,1,0,0,0,1,0,0,0;0,1,1,8种可能,小明赢的可能性为于是P(小明赢)=P(小华赢)=所以小华获胜的可能性大故答案为:小华【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平三解答题(共10小题)20(2016南京一模)把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图),小明和小亮用图中的转盘做游戏;分别转动转盘两次,若两次数字之积是偶数,小明获胜,否则小亮获胜你认为游戏是否公平?请说明理由【分析】利用列表法表示出所有可能,进而分别求出小明和小亮获胜概率,即可得出答案【解答】解:此游戏不公平理由:列表如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)两数之积为偶数的一共有5种,小明获胜的概率为:,同理可得出小亮获胜的概率为:,故此游戏不公平【点评】此题主要考查了列表法求概率,根据已知得出数据所有情况是解题关键21(2016秋新乡期中)把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒(记为A盒、B盒)中搅匀,再从两个盒子中各随机抽取一张(1)从A盒中抽取一张卡片,数字为奇数的概率是多少?(2)若取出的两张卡片数字之和为奇数,则小明胜;若取出的两张卡片数字之和为偶数,则小亮胜;试分析这个游戏是否公平?请说明理由【分析】(1)找出1、2、3中的奇数个数,根据概率公式即可得出结论;(2)分别找出小明获胜与小亮获胜的情况,二者比较后即可得出结论【解答】解;(1)在1、2、3中为奇数的有1、3,从A盒中抽取一张卡片,数字为奇数的概率为23=(2)取出的两张卡片数字之和为奇数的情况有1+2、3+2、2+1、2+3四种;取出的两张卡片数字之和为偶数的情况有1+1、1+3、2+2、3+1、3+3五种45,小亮获胜的概率高,此游戏不公平【点评】本题考查了游戏公平性以及概率公式,熟练掌握概率公式是解题的关键22(2015秦皇岛校级模拟)扬州体育场下周将举办明星演唱会,小莉和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去(1)请用树状图或列表的方法求小莉去体育场看演唱会的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则【分析】(1)用列表法列举出所以出现的情况,再用概率公式求出概率即可(2)游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即两纸牌上的数字之和为偶数或奇数时的概率是否相等,求出概率比较,即可得出结论【解答】解:(1)所有可能的结果如下表:(也可用树状图)和123545679678911789101289101113一共有16种结果,每种结果出现的可能性相同,偶数一共有6个,故P(小莉去上海看演唱会)=;(2)由(1)列表的结果可知:小莉去的概率为,哥哥去的概率为,所以游戏不公平,对哥哥有利;游戏规则改为:若和为偶数则小莉得(5分),若和为奇数则哥哥得(3分),则游戏是公平的(其它的规则同等给分)【点评】此题主要考查了游戏公平性的判断列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件游戏双方获胜的概率相同,游戏就公平,否则游戏不公平23(2015槐荫区三模)小明和小丽用形状大小相同、面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值和是奇数,则小丽赢请你判断这个游戏是否公平,并说明理由【分析】用列表法展示所有6种等可能的结果数,面值和是偶数和奇数各3种,然后根据概率的概念计算出小明获胜的概率;小明获胜的概率=,小丽获胜的概率=,由此判断这个游戏公平【解答】解:游戏是公平的,抽取的面值之和列表(或树状图)为:第一张第二张45156267378总共有6种可能,面值和是偶数和奇数各3种可能,游戏对双方是公平的【点评】本题考查了游戏的公平性:先利用列表法或树状图法求出各事件的概率,然后比较概率的大小判断游戏的公平性24(2015武汉模拟)四张质地相同的卡片如图所示将卡片洗匀后,背面朝上放置在桌面上(1)随机抽取一张卡片,求恰好抽到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如图所示你认为这个游戏公平吗?请说明理由【分析】(1)根据概率公式即可求解;(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平【解答】解:(1)P(抽到数字2)=(2分)(2)公平列表:22362(2,2)(2,2)(2,3)(2,6)2(2,2)(2,2)(2,3)(2,6)3(3,2)(3,2)(3,3)(3,6)6(6,2)(6,2)(6,3)(6,6)由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过30的结果有8种(5分)所以P(小贝胜)=,P(小晶胜)=所以游戏公平(7分)【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平25(2014思明区校级模拟)如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,35=15,按规则乙胜)你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由【分析】首先根据题意画出树状图,然后根据树状图即可求得甲乙获胜的概率,因为概率不等,可求得得分也不等,故不公平新游戏规则,只要能求得甲乙得分相等即可【解答】解:不公平画树状图得:共有24种等可能的结果,所得的积是偶数的有18种情况,是奇数的有6种情况,P(甲获胜)=,P(乙获胜)=,不公平修改游戏规则:把游戏中由A,B两个转盘中所指的两个数字的“积”改成“和”,游戏就公平了在A盘和B盘中指针所指的两个数字作和共有24种情况,而A盘中每个数字与B盘中的各数字作和得到偶数和奇数的种数都是12,甲,乙获胜的概率都为双方公平【点评】本题考查的是游戏公平性的判断注意解此题的关键是计算每个事件的概率,然后根据概率求得甲乙的得分,比较得分即可判定是否公平26(2014长沙校级模拟)暑假快要到了,某校准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数如图(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加用列表法或树形图分析这种方法对姐弟俩是否公平?【分析】(1)假设出去B地的人数为x,根据去B地参加夏令营活动人数占总人数的40%,进而得出方程求出即可;(2)根据已知列表得出所有可能,进而利用概率公式求出即可【解答】解:(1)去B地参加夏令营活动人数占总人数的40%,设去B地的人数为x人,100%=40%,解得:x=40,答:去B地的人数为40人; (2)列表:4(1,4)(2,4)(3,4)(4,4)3(1,3)(2,3)(3,3)(4,3)2(1,2)(2,2)(3,2)(4,2)1(1,1)(2,1)(3,1)(4,1)1234姐姐能参加的概率P(姐姐)=,弟弟能参加的概率为P(弟弟)=,P(姐姐)P(弟弟),不公平【点评】此题主要考查了条形统计图以及列表法求出概率和游戏公平性等知识,正确列举出所有可能是解题关键27(2014双柏县二模)把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张(1)用画树状图或列表的方法写出所有可能出现的结果;(2)试求取出的两张卡片数字之积不小于5的概率;(3)若取出的两张卡片数字之积为奇数,则甲胜;取出的两张卡片数字之积为偶数,则乙胜;试分析这个游戏是否公平?请说明理由【分析】(1)利用列表法分别列举出所有可能即可;(2)利用(1)中表格进而得出数字之积不小于5的个数,进而求出积不小于5的概率;(3)分别求出数字之积为偶数以及为奇数的概率进而得出答案【解答】解:(1)列表如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)所有可能的结果有九种;(2)积不小于5的有3种,P(积不小于5)=;(3)游戏不公平,P(积为奇数)=,P(积为偶数)=,两张卡片积为偶数的概率要大,乙胜的可能性要大,游戏不公平【点评】此题主要考查了游戏公平性以及概率公式应用,正确列举出所有可能是解题关键28(2014靖江市模拟)四张质地相同的卡片如图所示将卡片洗匀后,背面朝上放置在桌面上(1)随机抽取一张卡片,求恰好抽到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如下随机抽取一张卡片,记下数字放回,洗匀后再抽一张将抽取的第一张、第二张卡片上的数字分别作为十位数和个位数,若组成的两位数不超过32,则小贝胜,反之小晶胜你认为这个游戏公平吗?请用列表法或树状图请说明理由,若认为不公平,请修改游戏规则,使游戏公平【分析】(1)根据概率公式即可求解;(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平【解答】解:(1)P(抽到数字2)=;(2)列表:22362(2,2)(2,2)(2,3)(2,6)2(2,2)(2,2)(2,3)(2,6)3(3,2)(3,2)(3,3)(3,6)6(6,2)(6,2)(6,3)(6,6)由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过32的结果有10种,所以P(小贝胜)=,P(小晶胜)=所以游戏不公平调整规则:法一:将游戏规则中的32换成2631(包括26和31)之间的任何一个数都能使游戏公平法二:游戏规则改为:抽到的两位数不超过32的得3分,抽到的两位数超过32的得5分;能使游戏公平法三:游戏规则改为:组成的两位数中,若个位数字是2,小贝胜,反之小晶胜【点评】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平29(2014杭州模拟)如图在圆盘的圆周上均匀的分布着09的10个数,箭头固定并指向0,圆盘可以任意旋转,记Pk(k=1,29)表示箭头落在0k之间的概率如P3=(1)求当k=8时的概率P8(2)若规定,k取到奇数时,甲同学获胜,k取到偶数时,乙同学获胜,这样的规定是否公平?请说明理由(3)请你设计一个规定,能公平的选出两位同学去参加某项活动并说明你的规定是符合要求的【分析】(1)根据P3=,即可得出P8的值;(2)利用(1)中所求规律得出P1=,P3=,P5=,P7=,P9=,进而得出k取到奇数时,甲同学获胜概率,即可得出乙获胜概率进而得出答案;(3)利用游戏公平性结合概率公式得出即可【解答】解:(1)Pk(k=1,29),当k=8时符合题意的有8个数,;(2)k取到奇数时,P1=,P3=,P5=,P7=,P9=,k取到偶数时,P2=,P4=,P6=,P8=,不公平;(3)规则:当指针指向奇数则甲获胜,当指针指向偶数则乙获胜【点评】此题主要考查了游戏公平性以及概率公式应用,根据题意得出Pk的意义是解题关键
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 人文社科


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!