江苏省2019高考数学二轮复习 第23讲 与几何相关的应用题冲刺作业.docx

上传人:tian****1990 文档编号:6377999 上传时间:2020-02-24 格式:DOCX 页数:4 大小:69.56KB
返回 下载 相关 举报
江苏省2019高考数学二轮复习 第23讲 与几何相关的应用题冲刺作业.docx_第1页
第1页 / 共4页
江苏省2019高考数学二轮复习 第23讲 与几何相关的应用题冲刺作业.docx_第2页
第2页 / 共4页
江苏省2019高考数学二轮复习 第23讲 与几何相关的应用题冲刺作业.docx_第3页
第3页 / 共4页
点击查看更多>>
资源描述
第23讲与几何相关的应用题1.(2018南京金陵中学、海安高级中学、南京外国语学校高三模拟)如图,OM,ON是某景区的两条道路(宽度忽略不计),其中OM为东西走向,Q为景区内一景点,A为道路OM上一游客休息区.已知tanMON=-3,OA=6百米,Q到直线OM,ON的距离分别为3百米,6105百米.现新修一条自A经过Q的有轨观光直路并延伸与道路ON交于点B,并在B处修建一游客休息区.(1)求有轨观光直路AB的长;(2)已知在景点Q的正北方6百米的P处有一大型音乐喷泉组合,喷泉表演一次的时长为9分钟.表演时,喷泉喷洒区域以P为圆心,r为半径且变化,且t分钟时,r=2at百米(0t9,0a0),由|3x0+3|10=6105,解得x0=3(舍x=-5),所以Q(3,3).故直线AQ的方程为y=-(x-6),即x+y-6=0,y=-3x,x+y-6=0,解得x=-3,y=9,即B(-3,9).所以AB=92.(2)将喷泉记为圆P,由题意可得P(3,9),设t分钟时,观光车在直路AB上的点C处,则BC=2t,0t9,所以C(-3+t,9-t).若喷泉不会洒到观光车上,则PC2r2对t0,9恒成立,即PC2=(6-t)2+t2=2t2-12t+364at,当t=0时,上式成立,当t0,9时,2at+18t-6,t+18t-6min=62-6,当且仅当t=32时取等号,因为a(0,1),所以rPC恒成立,即观光车不会被喷泉喷洒到.2.解析以AD所在直线为x轴,以线段AD的中垂线为y轴建立平面直角坐标系.(1)直线PB的方程为y=2x,半圆O的方程为x2+y2=402(y0),由y=2x,x2+y2=402(y0),得y=165.所以点P到AD的距离为165m.(2)由题意,得P(40cos,40sin).直线PB的方程为y+80=sin+2cos+1(x+40),令y=0,得xE=80cos+80sin+2-40=80cos-40sinsin+2.直线PC的方程为y+80=sin+2cos-1(x-40),令y=0,得xF=80cos-80sin+2+40=80cos+40sinsin+2.所以EF的长度为f()=xF-xE=80sinsin+2,0,2.区域IV、VI的面积之和为S1=1280-80sinsin+280=6400sin+2,区域II的面积为S2=12EF40sin=1280sinsin+240sin=1600sin2sin+2,所以S1+S2=1600sin2+6400sin+202.设sin+2=t,则2t3,S1+S2=1600(t-2)2+6400t=1600t+8t-41600(42-4)=6400(2-1),当且仅当t=22,即sin=22-2时“=”成立.此时休闲区域II、IV、VI的面积S1+S2最小,即绿化区域面积之和最大.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!