资源描述
2019-2020年人教A版高中数学选修4-4 1-3-1 圆的极坐标方程 教案教学目标:1、掌握极坐标方程的意义2、能在极坐标中给出简单图形的极坐标方程教学重点、极坐标方程的意义教学难点:极坐标方程的意义 教学方法:启发诱导,讲练结合。教 具:多媒体、实物投影仪 教学过程:一、复习引入:问题情境1、直角坐标系建立可以描述点的位置极坐标也有同样作用?2、直角坐标系的建立可以求曲线的方程 极坐标系的建立是否可以求曲线方程?学生回顾1、直角坐标系和极坐标系中怎样描述点的位置?2、曲线的方程和方程的曲线(直角坐标系中)定义3、求曲线方程的步骤4、极坐标与直角坐标的互化关系式:二、讲解新课: 1、引例如图,在极坐标系下半径为a的圆的圆心坐标为(a,0)(a0),你能用一个等式表示圆上任意一点,的极坐标(r,q)满足的条件?解:设M (r,q)是圆上O、A以外的任意一点,连接AM,则有:OM=OAcos,即:2acos ,2、提问:曲线上的点的坐标都满足这个方程吗?可以验证点O(0,/2)、A(2a,0)满足式.等式就是圆上任意一点的极坐标满足的条件.反之,适合等式的点都在这个圆上.3、定义:一般地,如果一条曲线上任意一点都有一个极坐标适合方程的点在曲线上,那么这个方程称为这条曲线的极坐标方程,这条曲线称为这个极坐标方程的曲线。例1、已知圆O的半径为r,建立怎样的坐标系,可以使圆的极坐标方程更简单?建系;设点;M(,)列式;OMr, 即:r证明或说明.变式练习:求下列圆的极坐标方程()中心在(a,0),半径为a;()中心在(a,p/2),半径为a;()中心在(a,q),半径为a答案:(1)r2acos q(2) r2asin q(3)例2(1)化在直角坐标方程为极坐标方程,(2)化极坐标方程 为直角坐标方程。三、课堂练习:1.以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 (C)2.极坐标方程分别是cos和sin的两个圆的圆心距是多少? 四、课堂小结:1曲线的极坐标方程的概念2求曲线的极坐标方程的一般步骤五、课外作业:教材 1,21在极坐标系中,已知圆的圆心,半径,(1)求圆的极坐标方程。(2)若点在圆上运动,在的延长线上,且,求动点的轨迹方程。
展开阅读全文