2019高考数学 狠抓基础题 专题01 集合与常用逻辑用语 文.doc

上传人:xt****7 文档编号:3892895 上传时间:2019-12-28 格式:DOC 页数:9 大小:194KB
返回 下载 相关 举报
2019高考数学 狠抓基础题 专题01 集合与常用逻辑用语 文.doc_第1页
第1页 / 共9页
2019高考数学 狠抓基础题 专题01 集合与常用逻辑用语 文.doc_第2页
第2页 / 共9页
2019高考数学 狠抓基础题 专题01 集合与常用逻辑用语 文.doc_第3页
第3页 / 共9页
点击查看更多>>
资源描述
专题01 集合与常用逻辑用语一、集合1元素与集合之间有且仅有“属于()”和“不属于()”两种关系,且两者必居其一.2集合中元素的特性:确定性、互异性、无序性.3常用数集及其记法:集合非负整数集(自然数集)正整数集整数集有理数集实数集复数集符号或注意:实数集不能表示为x|x为所有实数或,因为“ ”包含“所有”“全体”的含义.4理解子集、真子集的概念,知道由“若,有”得是的子集,记作;上述条件下,若“,”得是的真子集,记作.注意子集表示符号“”与元素和集合关系符号“”的区别.5给定一个集合,能够写出其子集、真子集、非空子集的个数,如给定集合的元素个数为,则其子集、真子集、非空子集的个数分别为.6交集:,取两个集合的公共元素组成集合;并集:,取两个集合所有元素组成集合;补集:,取全集中不属于集合A的元素组成集合.注意:(1)空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解.(2)集合的运算顺序,如表示先计算A的补集,再进行并集计算;则表示先进行A与B的并集计算,再进行补集计算.二、四种命题及其关系1四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若,则逆否命题若,则2四种命题间的关系三、充分条件、必要条件1充分条件与必要条件的概念(1)若pq,则p是q的充分条件,q是p的必要条件;(2)若pq且qp,则p是q的充分不必要条件;(3)若pq且qp,则p是q的必要不充分条件;(4)若pq,则p是q的充要条件; (5)若pq且qp,则p是q的既不充分也不必要条件.2判断充分条件、必要条件的方法:(1)定义法:寻找之间的推理关系,即对“若则”的真假进行判断,获得结论;(2)集合法:借助集合间的基本关系进行充分性与必要性的判断;(3)等价法:借助原命题与逆否命题的真假等价性进行判断.四、逻辑联结词、全称量词与存在量词1常见的逻辑联结词:或、且、非一般地,用联结词“且”把命题p和q联结起来,得到一个新命题,记作,读作“p且q”;用联结词“或”把命题p和q联结起来,得到一个新命题,记作,读作“p或q”;对一个命题p的结论进行否定,得到一个新命题,记作,读作“非p”2复合命题的真假判断“p且q”“p或q”“非p”形式的命题的真假性可以用下面的表(真值表)来确定:pq真真假假真真真假假真真假假真真假真假假假真真假假3全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等存在量词存在一个、至少一个、有些、某些等4含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:命题命题的否定一、考查集合间的基本关系【例1】已知集合,则集合的子集的个数为A BC D【答案】B【解析】集合,故集合的子集的个数为.故选B.【名师点睛】对于集合间的基本关系,高考中一般考查求子集的个数或由集合间的关系求参数的取值范围问题.二、考查集合的基本运算【例2】已知集合,则A BC D【答案】C【解析】由已知得,则,又,故,故选C.【例3】已知集合,则A BC D【答案】C【解析】集合,.集合,.故选C【名师点睛】集合间的运算问题,常和函数等其他知识相结合,求解时注意区分是求有限集间集合的运算还是无限集间集合的运算,若是有限集间集合的运算问题,一般使用定义法和Venn图法;若是无限集间集合的运算,则一般用数轴求解.三、充分条件、必要条件【例4】已知条件p:函数的定义域,条件,则是的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】依题意,要使函数有意义,则,得x-3或,故命题p:xx2得2x3,则q:2x3,则,但p不能推出q,故p是q的充分不必要条件【例5】已知,若的一个充分不必要条件是,则实数的取值范围是A B C D【答案】A【解析】由基本不等式得,由,又因为的一个充分不必要条件是,则,故选A.【名师点睛】注意区分A是B的充分条件与A的充分条件是B:(1)“A的充分不必要条件是B”是指B能推出A,且A不能推出B,即BA且AB;(2)“A是B的充分不必要条件”则是指A能推出B,且B不能推出A,即AB且.四、含有逻辑联结词的命题真假的判断【例6】已知命题: ,;命题:,则下列命题中为真命题的是A BC D【答案】A【解析】,故为假命题,为真命题.因为,所以命题:,为假命题,所以为真命题,则为真命题,故选A【名师点睛】(1)判断“”、“”形式复合命题真假的步骤:第一步,确定复合命题的构成形式;第二步,判断简单命题p、q的真假;第三步,根据真值表作出判断注意:一真“或”为真,一假“且”为假(2)不含逻辑联结词的复合命题,通过辨析命题中词语的含义和实际背景,弄清其构成形式(3)当为真,p与q一真一假;为假时,p与q至少有一个为假.五、全称命题与特称命题【例7】下列命题中是假命题的是A使 B,函数都不是偶函数C使是幂函数,且在上单调递减D,函数有零点【答案】B【解析】对于选项A,如当时,所以选项A的命题为真命题;对于选项B,当时,函数是偶函数,因此选项B中的命题为假命题;对于选项C,如当时,在上单调递减,所以选项C中的命题为真命题;对于选项D,当时,则,所以,函数有零点,所以选项D中的命题为真命题.【名师点睛】全称命题与特称命题的真假判断在高考中出现时,常与数学中的其他知识点相结合,题型以选择题为主,难度一般不大.【例8】已知命题,则命题的否定为A BC D【答案】C 【解析】全称命题的否定为特称命题,故其否定为.故选C.【名师点睛】全称(或特性)命题的否定与命题的否定有着一定的区别,全称(或特性)命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定则直接否定结论即可从命题形式上看,全称命题的否定是特征命题,特征命题的否定是全称命题 1已知集合,则实数a的值为A1 B0 C1 D2【答案】A 2命题“x0R,+x0+10”的否定为A“x0R,+x0+10” B“x0R,+x0+10”C“xR,x2+x+10” D“xR,x2+x+10”【答案】C 【解析】本题考查全称量词与存在量词易知原命题的否定为“xR,x2+x+10”3设,那么等于A BC D【答案】B【解析】因为,所以4已知集合P=x|0x4,Q=x|x=,yP,则Ax|0x2 Bx|0x4Cx|2x2【答案】C【解析】因为P=x|0x4,所以Q=x|0x0,x+4,命题q:x0(0,+),则下列判断正确的是Ap是假命题Bq是真命题Cp(q)是真命题D( p)q是真命题【答案】C【解析】由基本不等式,知p为真命题;由,知x0=-1,故q为假命题所以p(q)为真命题,故选C6已知命题: “关于的方程有实根”,若非为真命题的充分不必要条件为,则实数的取值范围是A BC D【答案】A【解析】由命题:“关于的方程有实根”,得,则,所以非为真命题时,.又是的充分不必要条件,所以,即,则m的取值范围为.所以选A.7命题:若,则,其否命题是_.【答案】若a2,则a24【解析】根据否命题的定义,原命题为:若,则,则否命题为:若a2,则a20,如果p(1)是假命题,p(2)是真命题,则实数m的取值范围是_【答案】3,8)【解析】由p(1)是假命题,知12+21-m=3-m0,得m3;又由p(2)是真命题,知22+22-m=8-m0,得m8所以m的取值范围是3,8).9下面四个命题:命题“”的否定是“”;:向量,则是的充分且必要条件;:“在中,若,则”的逆否命题是“在中,若,则”;:若“”是假命题,则是假命题.其中为真命题的是_.(填所有真命题的序号)【答案】【解析】对于:命题“”的否定是“”,所以是假命题;对于:向量,所以等价于mn=0即m=n,则是的充分且必要条件,所以是真命题;对于:“在中,若,则”的逆否命题是“在中,若,则”,所以是真命题;对于:若“”是假命题,则p或q是假命题,所以是假命题.故填.10设有两个命题,:关于的不等式(,且)的解集是;:函数的定义域为.如果为真命题,为假命题,则实数的取值范围是_.【答案】【解析】易知p:0a8可得x2,求解绝对值不等式x2可得x2或x8”是“|x|2” 的充分而不必要条件.故选A
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!