资源描述
专题5.2 图形的相似一、单选题1学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,垂足分别为,则栏杆端应下降的垂直距离为( )A. B. C. D. 【来源】xx年浙江省绍兴市中考数学试卷解析【答案】C【点评】考查了相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.2在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )A. B. 或C. D. 或【来源】山东省潍坊市xx年中考数学试题【答案】B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m2,n2)或(m(-2),n(-2),即(2m,2n)或(-2m,-2n),故选B点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k3如图,将ABC沿BC边上的中线AD平移到ABC的位置,已知ABC的面积为9,阴影部分三角形的面积为4若AA=1,则AD等于()A. 2 B. 3 C. D. 【来源】四川省宜宾市xx年中考数学试题【答案】A【解析】分析:由SABC=9、SAEF=4且AD为BC边的中线知SADE=SAEF=2,SABD=SABC=,根据DAEDAB知,据此求解可得详解:如图,点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点 4在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1) B. (4,3) C. (3,4) D. (1,5)【来源】山东省滨州市xx年中考数学试题【答案】C点睛:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键5如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:;.其中正确的是( )A. B. C. D. 【来源】江苏省扬州市xx年中考数学试题【答案】A【解析】分析:(1)由等腰RtABC和等腰RtADE三边份数关系可证;(2)通过等积式倒推可知,证明PAMEMD即可;(3)2CB2转化为AC2,证明ACPMCA,问题可证详解:由已知:AC=AB,AD=AE点睛:本题考查了相似三角形的性质和判断在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案6要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为( )A. 3cm B. 4cm C. 4.5cm D. 5cm【来源】【全国省级联考】xx年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.7如图,是等边三角形,是等腰直角三角形,于点,连分别交,于点,过点作交于点,则下列结论:;.A. 5 B. 4 C. 3 D. 2【来源】湖北省孝感市xx年中考数学试题【答案】B详解:ABC为等边三角形,ABD为等腰直角三角形,BAC=60、BAD=90、AC=AB=AD,ADB=ABD=45,CAD是等腰三角形,且顶角CAD=150,ADC=15,故正确;AEBD,即AED=90,DAE=45,AFG=ADC+DAE=60,FAG=45,AGF=75,由AFGAGF知AFAG,故错误;记AH与CD的交点为P,由AHCD且AFG=60知FAP=30,则BAH=ADC=15,设EF=a,ADFBAH,BH=AF=2x,ABE中,AEB=90、ABE=45,BE=AE=AF+EF=a+2x,EH=BE-BH=a+2x-2x=a,APF=AEH=90,FAP=HAE,PAFEAH,即,整理,得:2x2=(-1)ax,由x0得2x=(-1)a,即AF=(-1)EF,故正确;故选:B点睛:本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点二、填空题8如图,ABC中,点D、E分別在AB、AC上,DEBC,AD:DB=1:2,则ADE与ABC的面积的比为_【来源】江苏省连云港市xx年中考数学试题【答案】1:9点睛:本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键9已知且,则=_【来源】四川省凉山州xx年中考数学试题【答案】【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可详解:ABCABC,SABC:SABC=AB2:AB2=1:2,AB:AB=1:点睛:本题的关键是理解相似三角形的面积比等于相似比的平方10如图,直线,直线交,于点,;直线交,于点,.已知,则_【来源】xx年浙江省舟山市中考数学试题【答案】2【点评】考查平行线分线段成比例定理,熟练掌握定理是解题的关键.11如图,E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF已知AGGF,AC=,则AB的长为_【来源】江苏省连云港市xx年中考数学试题【答案】2【解析】分析:连接BD由ADGGCF,设CF=BF=a,CG=DG=b,可得,推出,可得b=a,在RtGCF中,利用勾股定理求出b,即可解决问题;详解:如图,连接BD四边形ABCD是矩形,ADC=DCB=90,AC=BD=,CG=DG,CF=FB,GF=BD=,点睛:本题考查中点四边形、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型 12如图,中,于点,于点,于点,则_.【来源】湖南省娄底市xx年中考数学试题【答案】6【解析】【分析】由等腰三角形的性质可得C ABC, BD=DC=BC,再根据BED=CFB=90,可证BEDCFB,根据相似三角形的对应边成比例即可求得.【点睛】本题考查了等腰三角形的性质、相似三角形的判定与性质,得到BEDCFB是解本题的关键.13矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足PBEDBC,若APD是等腰三角形,则PE的长为数_.【来源】安徽省xx年中考数学试题【答案】3或1.2【解析】【分析】由PBEDBC,可得PBE=DBC,继而可确定点P在BD上,然后再根据APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】四边形ABCD是矩形,BAD=C=90,CD=AB=6,BD=10,如图2,当AP=DP时,此时P为BD中点,PBEDBC,PE:CD=PB:DB=1:2,PE:6=1:2,PE=3; 综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.14九章算术是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为_步【来源】山东省泰安市xx年中考数学试题【答案】点睛:本题考查了相似三角形的应用解题的关键是证明CKDDHA15如图,在直角ABC中,C=90,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使APQ是等腰三角形且BPQ是直角三角形,则AQ =_【来源】江苏省盐城市xx年中考数学试题【答案】或【解析】分析:分两种情形分别求解:如图1中,当AQ=PQ,QPB=90时,当AQ=PQ,PQB=90时;详解:如图1中,当AQ=PQ,QPB=90时,设AQ=PQ=x,当AQ=PQ,PQB=90时,如图2,设AQ=PQ=yBQPBCA,y=综上所述,满足条件的AQ的值为或点睛:本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题三、解答题16如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.【来源】四川省凉山州xx年中考数学试题【答案】(1)作图见解析;.(2)作图见解析;(3)16.详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:ABC即为所求;(3)SABC=48=16点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形17如图,在中,为上一点,以为圆心,长为半径作圆,与相切于点,过点作交的延长线于点,且. (1)求证:为的切线; (2)若, ,求的长.【来源】江西省xx年中等学校招生考试数学试题【答案】(1)证明见解析;(2) 【详解】(1)作OEAB于点E,切BC于点C,OCBC,ACB=90, ADBD,D=90,ABDBAD =90,CBDBOC=90,BOC=AOD,AOD=BAD,BOC=BAD,ABD=CBD在OBC和OBE中,OBCOBE,OE=OC,OE是O的半径 ,OEAB ,AB为O的切线; 【点睛】本题考查了切线的判定与性质,相似三角形的判定与性质等,熟练掌握相关的判定与性质定理是解题的关键.18如图,在中,=8,=4,=6,是的平分线,交于点,求的长.【来源】江西省xx年中等学校招生考试数学试题【答案】4【解析】【分析】由已知条件先求得CD=BC=4,然后再证明ABECDE,根据相似三角形对应边成比例结合CE+AE=AC=6即可求得AE的长.【详解】BD是ABC的平分线,ABD=CBD,【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质定理是解题的关键.19已知,中,是边上一点,作,分别交边,于点,.(1)若(如图1),求证:.(2)若,过点作,交(或的延长线)于点.试猜想:线段,和之间的数量关系,并就情形(如图2)说明理由.(3)若点与重合(如图3),且.求的度数;设,试证明:.【来源】xx年浙江省舟山市中考数学试题【答案】(1)证明见解析;(2)猜想:,理由见解析;(3);证明见解析.【解析】【分析】(1)根据平行线的判定,得到,证明.即可证明. (2)过点作的平行线交的延长线于点,证明得到.证明四边形是平行四边形,即可得到.(3)设,根据三角形的内角和列出方程,求解即可.延长至,使,连结,证明 .根据相似三角形的性质得到,即可证明.【解答】(1),.(3)设,又,即,即.【点评】考查平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,综合性比较强,对学生综合能力要求较高. 20(1)(发现)如图,已知等边ABC,将直角三角形的60角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.若AB=6,AE=4,BD=2,则CF =_;求证:EBDDCF.(2)(思考)若将图中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图所示.问点D是否存在某一位置,使ED平分BEF且FD平分CFE?若存在,求出的值;若不存在,请说明理由.(3)(探索)如图,在等腰ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中MON=B),使两条边分别交边AB、AC于点E、F(点E、F均不与ABC的顶点重合),连接EF.设B=,则AEF与ABC的周长之比为_(用含的表达式表示).【来源】江苏省盐城市xx年中考数学试题【答案】(1)4;证明见解析;(2)存在;(3)1-cos.(3)【探索】由已知不难求得CABC=AB+BC+CA=2AB+2OB=2(m+mcos),则需要用m和的三角函数表示出CAEF,CAEF=AE+EF+AF;题中直接已知O是BC的中点,应用(2)题的方法和结论,作OGBE,ODEF,OHCF,可得EG=ED,FH=DF,则CAEF=AE+EF+AF= AG+AH=2AG,而AG=AB-OB,从而可求得.证明:EDF=60,B=60CDF+BDE=120,BED+BDE=120,BED=CDF,又B=C,EBDDCF (2)存在.如图,作DMBE,DGEF,DNCF,垂足分别为M,G,N,ED平分BEF且FD平分CFE,DM=DG=DN,又B=C=60,BMD=CND=90,BDMCDN,BD=CD,即点D是BC的中点,;( 3 )连结AO,作OGBE,ODEF,OHCF,垂足分别为G,D,H,点睛:本题考查了角平分线的定义,等边三角形的性质,全等三角形以及相似三角形的判定和性质等知识点难度较大.21如图1,在中,于点的垂直平分线交于点,交于点,,(1)如图2,作于点,交于点,将沿方向平移,得到,连接求四边形的面积;直线上有一动点,求周长的最小值(2)如图3延长交于点过点作,过边上的动点作,并与交于点,将沿直线翻折,使点的对应点恰好落在直线上,求线段的长【来源】山东省潍坊市xx年中考数学试题【答案】(1);周长的最小值为9;(2)的长为或根据平移的性质,MM=CD=6,连接BM,如图1,四边形BHMM的面积=61.5+41.57.5;连接CM交直线EF于点N,连接DN,如图2,(2)BFCE,QF=2,PK=PK=6,过点K作EFEF,分别交CD于点E,交QK于点F,如图3,当点P在线段CE上时,在RtPKE中,PE2=PK2-EK2,PE2,RtPEKRtKFQ,综上所述,CP的长为或点睛:此题考查四边形的综合题,关键是根据相似三角形的性质和平移的性质解答,注意(2)分两种情况分析 22如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF/AB,EAB=EBA,过点B作DA的垂线,交DA的延长线于点G(1)DEF和AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与AGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M求证:BM2=MFMH【来源】山东省泰安市xx年中考数学试题【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.详解:(1)DEF=AEF,理由如下:EFAB,DEF=EBA,AEF=EAB EAB=EBA,DEF=AEF; (2)EOAAGB,理由如下:四边形ABCD是菱形,AB=AD,ACBD,GAB=ABE+ADB=2ABE AEO=ABE+BAE=2ABE GAB=AEO,GAB=AOE=90,EOAAGB; (3)如图,连接DM 四边形ABCD是菱形,由对称性可知,BM=DM,ADM=ABM ABCH,ABM=H,ADM=H DMH=FMD,MFDMDH,DM2=MFMH,BM2=MFMH 点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出EOAAGB是解答本题的关键
展开阅读全文