资源描述
2019年高考数学真题分类汇编 16 坐标系与参数方程 文考点一坐标系1.(xx陕西,15C,5分)(坐标系与参数方程选做题)在极坐标系中,点到直线sin=1的距离是.答案12.(xx广东,14,5分)(坐标系与参数方程选做题)在极坐标系中,曲线C1与C2的方程分别为2cos2=sin 与cos =1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.答案(1,2)考点二参数方程3.(xx湖南,12,5分)在平面直角坐标系中,曲线C:(t为参数)的普通方程为.答案x-y-1=04.(xx课标,23,10分)选修44:坐标系与参数方程已知曲线C:+=1,直线l:(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30的直线,交l于点A,求|PA|的最大值与最小值.解析(1)曲线C的参数方程为(为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任意一点P(2cos ,3sin )到l的距离为d=|4cos +3sin -6|,则|PA|=|5sin(+)-6|,其中为锐角,且tan =.当sin(+)=-1时,|PA|取得最大值,最大值为.当sin(+)=1时,|PA|取得最小值,最小值为.5.(xx课标,23,10分)选修44:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为=2cos ,.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.解析(1)C的普通方程为(x-1)2+y2=1(0y1).可得C的参数方程为(t为参数,0t).(2)设D(1+cos t,sin t).由(1)知C是以G(1,0)为圆心,1为半径的上半圆.因为C在点D处的切线与l垂直,所以直线GD与l的斜率相同.tan t=,t=.故D的直角坐标为,即.6.(xx辽宁,23,10分)选修44:坐标系与参数方程将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.解析(1)设(x1,y1)为圆上的点,经变换为C上点(x,y),依题意,得由+=1得x2+=1,即曲线C的方程为x2+=1.故C的参数方程为(t为参数).(2)由解得或不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为,所求直线斜率为k=,于是所求直线方程为y-1=,化为极坐标方程,并整理得2cos -4sin =-3,即=.
展开阅读全文