2019-2020年高考数学复习 专题02 函数与导数 对数与对数函数考点剖析.doc

上传人:xt****7 文档编号:3208334 上传时间:2019-12-09 格式:DOC 页数:2 大小:21KB
返回 下载 相关 举报
2019-2020年高考数学复习 专题02 函数与导数 对数与对数函数考点剖析.doc_第1页
第1页 / 共2页
2019-2020年高考数学复习 专题02 函数与导数 对数与对数函数考点剖析.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高考数学复习 专题02 函数与导数 对数与对数函数考点剖析主标题:对数与对数函数副标题:为学生详细的分析对数与对数函数的高考考点、命题方向以及规律总结。关键词:对数,对数函数难度:3重要程度:5考点剖析:1理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2理解对数函数的概念及其单调性,掌握对数函数的图象通过的特殊点,会画底数为2,10,的对数函数的图象;3体会对数函数是一类重要的函数模型;4了解指数函数yax(a0,且a1)与对数函数ylogax(a0,且a1)互为反函数.命题方向:高考对该部分的考查多与函数的基本性质相结合综合命题,涉及函数的奇偶性、单调性、零点问题,函数值的求解,函数图象的识别等问题,考查学生分析、解决问题的能力规律总结:(1)研究对数型函数的图象时,一般从最基本的对数函数的图象入手,通过平移、伸缩、对称变换得到特别地,要注意底数a1和0a1的两种不同情况有些复杂的问题,借助于函数图象来解决,就变得简单了,这是数形结合思想的重要体现(2)利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决知 识 梳 理1对数的概念如果axN(a0,且a1),那么数x叫做以a为底N的对数,记作xlogaN,其中a叫做对数的底数,N叫做真数2对数的性质与运算法则(1)对数的性质几个恒等式(M,N,a,b都是正数,且a,b1)N;logaaNN;logbN;logab;logab,推广logablogbclogcdlogad.(2)对数的运算法则(a0,且a1,M0,N0)loga(MN)logaMlogaN;logalogaMlogaN;logaMnnlogaM(nR);logalogaM.3对数函数的图象与性质a10a1图象性质(1)定义域:(0,)(2)值域:R(3)过点(1,0),即x1时,y0(4)当x1时,y0当0x1时,y0(5)当x1时,y0当0x1时,y0(6)在(0,)上是增函数(7)在(0,)上是减函数
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!