2019-2020年高三物理下学期第七次模拟考试试卷(含解析).doc

上传人:tia****nde 文档编号:3114403 上传时间:2019-12-05 格式:DOC 页数:16 大小:389KB
返回 下载 相关 举报
2019-2020年高三物理下学期第七次模拟考试试卷(含解析).doc_第1页
第1页 / 共16页
2019-2020年高三物理下学期第七次模拟考试试卷(含解析).doc_第2页
第2页 / 共16页
2019-2020年高三物理下学期第七次模拟考试试卷(含解析).doc_第3页
第3页 / 共16页
点击查看更多>>
资源描述
2019-2020年高三物理下学期第七次模拟考试试卷(含解析)一、选择题1中国首次太空授课活动于2013年6月20日上午举行,如图所示,航天员王亚平利用“天宫一号”中的“质量测量仪”测量航天员聂海胜的质量为74kg测量时,聂海胜与轻质支架被王亚平水平拉离初始位置,且处于静止状态,当王亚平松手后,聂海胜与轻质支架受到一个大小为100N的水平恒力作用而复位,用光栅测得复位时瞬间速度为1m/s,则复位的时间为( )A0.74 sB0.37 sC0.26 sD1.35 s2如图所示,在水平放置的半径为R的圆柱体轴线的正上方的P点,将一个小球以水平速度v0垂直圆柱体的轴线抛出,小球飞行一段时间后恰好从圆柱体的Q点沿切线飞过,测得O、Q连线与竖直方向的夹角为,那么小球完成这段飞行的时间是( )ABCD3如图所示,两平行金属板水平放置,板长为L,板间距离为d板间电压为U,一不计重力电荷量为q带电粒子以初速度v0沿两板的中线射入,恰好沿下板的边缘飞出,粒子通过平行金属板的时间为t,则( )A在时间内,电场力对粒子做的功为UqB在时间内,电场力对粒子做的功为UqC在粒子下落的前和后过程中,电场力做功之比为2:1D在粒子下落的前和后过程中,电场力做功之比为1:24如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为弧度,已知万有引力常量为G,则月球的质量是( )ABCD5如图所示,直线A为电源a的路端电压与电流的关系图象,直线B为电源b的路端电压与电流的关系图象,直线C为一个电阻R的两端电压与电流的关系图象将这个电阻R分别接到a、b两电源上,那么( )AR接到a电源上,电源的效率较高BR接到b电源上,电源的效率较高CR接到a电源上,电源的输出功率较大DR接到b电源上,电源的输出功率较大6如图所示,质量为m的木块A放在质量为M的三角形斜劈上,现用大小均为F、方向相反的水平力分别推A和B,它们均静止不动,则( )A地面对B的支持力大小一定等于(M+m)gBB与地面之间一定存在摩擦力CB对A的支持力可能大于mgDA与B之间一定存在摩擦力7如图所示,在直线MN下方存在着垂直于纸面向里的匀强磁场,磁感应强度为B放置在直线MN上P点的离子源,可以向磁场区域纸面内的各个方向发射出质量为m、电荷量为q的负离子,速率都为v对于那些在纸面内运动的离子,下列说法正确的是( )A离子射出磁场的点Q(图中未画出)到P的最大距离为B离子距离MN的最远距离为C离子在磁场中的运动时间与射入方向有关D对于沿同一方向射入磁场的离子,射入速率越大,运动时间越短二、实验题8某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图议所示打点计时器电源的频率为50Hz通过分析纸带数据,可判断物块在相邻计数点_和_之间某时刻开始减速计数点5对应的速度大小为_m/s,计数点6对应的速度大小为_m/s(保留三位有效数字)物块减速运动过程中加速度的大小为a=_m/s2,若用来计算物块与桌面间的动摩擦因数(g为重力加速度),则计算结果比动摩擦因数的真实值_(填“偏大”或 “偏小”)9某研究小组收集了两个电学元件:电阻R0(约为2k)和手机中的锂电池(电动势E标称值为3.7V,允许最大放电电流为100mA)实验室备有如下器材:A电压表V(量程3V,电阻RV约为4.0k)B电流表A1(量程100mA,电阻RA1约为5)C电流表A2(量程2mA,电阻RA2约为50)D滑动变阻器R1(040,额定电流1A)E电阻箱R2(0999.9)F开关S一只、导线若干(1)为了测定电阻R0的阻值,小明设计了一电路,如图甲所示为其对应的实物图,图中的电流表A应选_(选填“A1”或“A2”),实验采用分压电路,请将实物连线补充完整(2)为测量锂电池的电动势E和内阻r,小红设计了如图乙所示的电路图根据测量数据作出图象,如图丙所示若该图线的斜率为k,纵轴截距为b,则该锂电池的电动势E=_,内阻r=_(用k、b表示)10如图所示,一质量为m=2kg的滑块从半径为R=0.2m的光滑四分之一圆弧轨道的顶端A处由静止滑下,A点和圆弧对应的圆心O点等高,圆弧的底端B与水平传送带平滑相接已知传送带匀速运行速度为v0=4m/s,B点到传送带右端C点的距离为L=2m当滑块滑到传送带的右端C时,其速度恰好与传送带的速度相同(g=10m/s2)求:(1)滑块到达底端B时对轨道的压力;(2)滑块与传送带问的动摩擦因数;(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q11相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同ab棒光滑,cd棒与导轨间动摩擦因数为=0.75,两棒总电阻为1.8,导轨电阻不计ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放(1)求出磁感应强度B的大小和ab棒加速度大小;(2)已知在2s内外力F做功40J,求这一过程中两金属棒产生的总焦耳热;(3)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力fcd随时间变化的图象选修3-412如图所示是一列沿x轴传播的简谐横波在t=0时刻的波形图,质点P的振动方程为y=6sin4t(cm),则这列波的传播速度为_m/s,传播方向为沿_轴方向(填“+x”或“x”)13“道威棱镜”广泛地应用在光学仪器当中,如图,将一等腰直角棱镜截去棱角,使其平行于底面,可制成“道威棱镜”,这样就减小了棱镜的重量和杂散的内部反射如图所示,从M点发出的一束平行于底边CD的单色光从AC边射入,已知棱镜玻璃的折射率n=求光线进入“道威棱镜”时的折射角,并通过计算判断光线能否从CD边射出选修3-514自然界里放射性核素并非一次衰变就达到稳定,而是发生一系列连续的衰变,直到稳定的核素而终止,这就是“级联衰变”某个钍系的级联衰变过程如图(N轴表示中子数,Z轴表示质子数),图中PbBi的衰变是_衰变,从Th到208Pb共发生_次衰变15光滑水平轨道上有三个木块A、B、C,质量分别为mA=3m、mB=mC=m,开始时B、C均静止,A以初速度o向右运动,A与B相撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变求B与C碰撞前B的速度大小陕西省西安中学xx届高考物理七模试卷一、选择题1中国首次太空授课活动于2013年6月20日上午举行,如图所示,航天员王亚平利用“天宫一号”中的“质量测量仪”测量航天员聂海胜的质量为74kg测量时,聂海胜与轻质支架被王亚平水平拉离初始位置,且处于静止状态,当王亚平松手后,聂海胜与轻质支架受到一个大小为100N的水平恒力作用而复位,用光栅测得复位时瞬间速度为1m/s,则复位的时间为( )A0.74 sB0.37 sC0.26 sD1.35 s考点:牛顿第二定律;匀变速直线运动的位移与时间的关系专题:牛顿运动定律综合专题分析:根据牛顿第二定律求出加速度的大小,结合速度时间公式求出复位的时间解答:解:根据牛顿第二定律得,加速度为:a=m/s2,则复位的时间为:t=0.74s;故选:A点评:本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁,基础题2如图所示,在水平放置的半径为R的圆柱体轴线的正上方的P点,将一个小球以水平速度v0垂直圆柱体的轴线抛出,小球飞行一段时间后恰好从圆柱体的Q点沿切线飞过,测得O、Q连线与竖直方向的夹角为,那么小球完成这段飞行的时间是( )ABCD考点:平抛运动专题:平抛运动专题分析:根据几何关系求出到达Q点时,水平速度与末速度的夹角,进而求出竖直方向速度,根据t=求解时间解答:解:根据几何关系可知:水平速度与末速度的夹角为,则有:tan,解得:vy=v0tan根据t=得运动的时间为:t=故选:C点评:解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律,掌握运动学公式,并能灵活运用3如图所示,两平行金属板水平放置,板长为L,板间距离为d板间电压为U,一不计重力电荷量为q带电粒子以初速度v0沿两板的中线射入,恰好沿下板的边缘飞出,粒子通过平行金属板的时间为t,则( )A在时间内,电场力对粒子做的功为UqB在时间内,电场力对粒子做的功为UqC在粒子下落的前和后过程中,电场力做功之比为2:1D在粒子下落的前和后过程中,电场力做功之比为1:2考点:带电粒子在匀强电场中的运动专题:电场力与电势的性质专题分析:带正电的粒子进入水平放置的平行金属板内,做类平抛运动,竖直方向做初速度为0的匀加速运动,由推论可求出在前时间内和在后时间内竖直位移之比,由动能定理求出电场力做功粒子在下落前和后内,电场力做功相同解答:解:A、B、设粒子在前时间内和在后时间内竖直位移分别为y1、y2,由y=和匀变速直线运动的推论可知y1:y2=1:3,得:y1=d,y2=d,则在前时间内,电场力对粒子做的功为:W1=qU=qU,在后时间内,电场力对粒子做的功为:W2=qU=qU故A错误,B正确;C、D、根据W=qEy可得,在粒子下落前和后的过程中,电场力做功之比为1:1,故CD错误故选:B点评:本题是类平抛运动,要熟练掌握其研究方法:运动的合成与分解,并要抓住竖直方向初速度为零的匀加速运动的一些推论,研究位移和时间关系4如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为弧度,已知万有引力常量为G,则月球的质量是( )ABCD考点:万有引力定律及其应用专题:万有引力定律的应用专题分析:根据线速度和角速度的定义公式求解线速度和角速度,根据线速度和角速度的关系公式v=r求解轨道半径,然后根据万有引力提供向心力列式求解行星的质量解答:解:线速度为:v=角速度为:=根据线速度和角速度的关系公式,有:v=r卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律,有:联立解得:M=故选:C点评:本题关键抓住万有引力提供向心力,然后根据牛顿第二定律列式求解,不难,注意掌握线速度与角速度的定义5如图所示,直线A为电源a的路端电压与电流的关系图象,直线B为电源b的路端电压与电流的关系图象,直线C为一个电阻R的两端电压与电流的关系图象将这个电阻R分别接到a、b两电源上,那么( )AR接到a电源上,电源的效率较高BR接到b电源上,电源的效率较高CR接到a电源上,电源的输出功率较大DR接到b电源上,电源的输出功率较大考点:闭合电路的欧姆定律;电功、电功率专题:恒定电流专题分析:电源的效率等于电源的输出与总功率的百分比,根据欧姆定律得到,电源的效率也等于外电阻与电路总电阻之比由电源的UI图象斜率大小等于电源的内阻,比较读出电源内电阻的大小,确定电源的效率关系当电阻R与电源组成闭合电路时,电阻R的UI图线与电源的UI图线的交点表示工作状态,交点坐标的乘积等于电源的输出功率解答:解:A、B电源的效率=,由闭合电路欧姆定律U=EIr可知,b电源的内阻r较小,R接到b电源上,电源的效率较高故A错误,B正确 C、D当电阻R与电源组成闭合电路时,电阻R的UI图线与电源的UI图线的交点表示工作状态,交点的纵坐标表示电压,横坐标表示电流,两者乘积表示电源的输出功率,由图看出,R接到a电源上,电压与电流的乘积较大,电源的输出功率较大故C正确,D错误故选BC点评:本题是电源的外特性曲线与电阻的伏安特性曲线的综合,关键理解交点的物理意义,也可以根据欧姆定律研究电流与电压关系,来比较电源的输出功率6如图所示,质量为m的木块A放在质量为M的三角形斜劈上,现用大小均为F、方向相反的水平力分别推A和B,它们均静止不动,则( )A地面对B的支持力大小一定等于(M+m)gB B与地面之间一定存在摩擦力CB对A的支持力可能大于mgDA与B之间一定存在摩擦力考点:共点力平衡的条件及其应用;摩擦力的判断与计算专题:共点力作用下物体平衡专题分析:先对A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;再对物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力解答:解:AB、对A、B整体受力分析,如图,受到重力(M+m)g、支持力N和已知的两个推力,对于整体,由于两个推力刚好平衡,故整体与地面间没有摩擦力;根据共点力平衡条件,有N=(M+m)g故A正确,B错误;CD、再对物体A受力分析,受重力mg、已知的推力F、斜面体B对A的支持力N和摩擦力f,当推力F沿斜面分量大于重力的下滑分量时,摩擦力的方向沿斜面向下,如下图当推力F沿斜面分量小于重力的下滑分量时,摩擦力的方向沿斜面向上,如下图当推力F沿斜面分量等于重力的下滑分量时,摩擦力为零,如下图根据共点力平衡的条件,运用正交分解法,可以得到:N=mgcos+Fsin故C正确,D错误故选:AC点评:本题关键是对A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力,然后再对物体A受力分析,再次根据平衡条件列式求解出各个力的情况,难度适中7如图所示,在直线MN下方存在着垂直于纸面向里的匀强磁场,磁感应强度为B放置在直线MN上P点的离子源,可以向磁场区域纸面内的各个方向发射出质量为m、电荷量为q的负离子,速率都为v对于那些在纸面内运动的离子,下列说法正确的是( )A离子射出磁场的点Q(图中未画出)到P的最大距离为B离子距离MN的最远距离为C离子在磁场中的运动时间与射入方向有关D对于沿同一方向射入磁场的离子,射入速率越大,运动时间越短考点:带电粒子在匀强磁场中的运动专题:带电粒子在磁场中的运动专题分析:根据牛顿第二定律由洛伦兹力提供粒子圆周运动向心力求出粒子运动的半径,由几何知识求最远距离解答:解:粒子射入的速度方向不同则轨迹不同,但半径都相同,如图:A、离子射出磁场的点Q到P的最大距离为2倍半径,如图中左图所示,故最大距离为2,A错误;B、如图,下图,离子距离MN的最远距离为2倍半径,即2,B正确;C、离子的周期T=,可见周期都相同,则离子在磁场中的运动时间取决于转过的圆心角,而转过的圆心角与射入方向有关,故C正确;D、离子的周期T=,可见周期都相同,对于沿同一方向射入磁场的离子,运动时间都相同,D错误;故选:BC点评:本题考查分析和处理粒子在磁场中运动的轨迹问题,难点在于分析弦的最大值,注意临界位置二、实验题8某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图议所示打点计时器电源的频率为50Hz通过分析纸带数据,可判断物块在相邻计数点6和7之间某时刻开始减速计数点5对应的速度大小为1.00m/s,计数点6对应的速度大小为1.20m/s(保留三位有效数字)物块减速运动过程中加速度的大小为a=2.00m/s2,若用来计算物块与桌面间的动摩擦因数(g为重力加速度),则计算结果比动摩擦因数的真实值偏大(填“偏大”或“偏小”)考点:探究小车速度随时间变化的规律专题:实验题;直线运动规律专题分析:由纸带两个点之间的时间相同,若位移逐渐增大,表示物体做加速运动,若位移逐渐减小,则表示物体做减速运动;用平均速度代替瞬时速度的方法求解瞬时速度;用作差法求解减速过程中的加速度;解答:解:从纸带上的数据分析得知:在点计数点6之前,两点之间的位移逐渐增大,是加速运动,在计数点7之后,两点之间的位移逐渐减小,是减速运动,所以物块在相邻计数点6和7之间某时刻开始减速;v5=1.00m/sv6=m/s=1.20m/s由纸带可知,计数点7往后做减速运动,根据作差法得:a=2.00m/s2在减速阶段产生的加速度的力是滑动摩擦力和纸带受的阻力,所以计算结果比动摩擦因素的真实值偏大故答案为:6;7;1.00;1.20;2.00,偏大点评:要提高应用匀变速直线的规律以及推论解答实验问题的能力,在平时练习中要加强基础知识的理解与应用9某研究小组收集了两个电学元件:电阻R0(约为2k)和手机中的锂电池(电动势E标称值为3.7V,允许最大放电电流为100mA)实验室备有如下器材:A电压表V(量程3V,电阻RV约为4.0k)B电流表A1(量程100mA,电阻RA1约为5)C电流表A2(量程2mA,电阻RA2约为50)D滑动变阻器R1(040,额定电流1A)E电阻箱R2(0999.9)F开关S一只、导线若干(1)为了测定电阻R0的阻值,小明设计了一电路,如图甲所示为其对应的实物图,图中的电流表A应选A2(选填“A1”或“A2”),实验采用分压电路,请将实物连线补充完整(2)为测量锂电池的电动势E和内阻r,小红设计了如图乙所示的电路图根据测量数据作出图象,如图丙所示若该图线的斜率为k,纵轴截距为b,则该锂电池的电动势E=,内阻r=(用k、b表示)考点:测定电源的电动势和内阻专题:实验题分析:(1)根据通过待测电阻的最大电流选择电流表;为准确测量电阻阻值,应测多组实验数据,根据待测电阻阻值与滑动变阻器最大阻值间的关系确定滑动变阻器的接法;根据待测电阻与电表内阻间的关系确定电流表的接法,然后连接实物电路图(2)由闭合电路的欧姆定律求出与的关系式,根据该关系式求出电源的电动势与内阻;由于电压表的分流作用使测量值偏小解答:解:(1)电压表量程是3V,通过待测电阻的最大电流I=0.0015A=1.5mA,因此电流表应选电流表A2(量程2mA,电阻RA2约为50);待测电阻R0阻值约为2k,滑动变阻器R1(040,额定电流1A)与电阻箱R2(0999.9)最大阻值均小于待测电阻阻值,变阻器采用限流接法时待测电阻电压与电流变化范围较小,不能测多组实验数据,为测多组实验数据,减小实验误差,滑动变阻器应采用分压接法;=40,=2,电流表应该采用内接法,实物电路图如图所示(2)由图乙所示电路可知,E=U+Ir=U+r,则=+,因此图象的纵轴截距b=,电动势E=,图象的斜率k=,则电源内阻r=kE=;由图乙所示可知,由于电压表分流,使实验的测量值偏小故答案为:(1)A2;电路图如图所示;(2);点评:根据待测电阻与滑动变阻器阻值间的关系确定滑动变阻器的接法,根据待测电阻阻值与电表内阻间的关系确定电流表的接法是正确连接实物电路图的前提与关键10如图所示,一质量为m=2kg的滑块从半径为R=0.2m的光滑四分之一圆弧轨道的顶端A处由静止滑下,A点和圆弧对应的圆心O点等高,圆弧的底端B与水平传送带平滑相接已知传送带匀速运行速度为v0=4m/s,B点到传送带右端C点的距离为L=2m当滑块滑到传送带的右端C时,其速度恰好与传送带的速度相同(g=10m/s2)求:(1)滑块到达底端B时对轨道的压力;(2)滑块与传送带问的动摩擦因数;(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q考点:机械能守恒定律;牛顿第二定律;牛顿第三定律专题:机械能守恒定律应用专题分析:(1)滑块从A运动到B的过程中,只有重力做功,根据机械能守恒定律求出滑块到达底端B时的速度滑块经过B时,由重力和轨道的支持力的合力提供向心力,根据牛顿运动定律求解滑块对轨道的压力;(2)滑块滑上传送带后向右做匀加速运动,由题,滑块滑到传送带的右端C时,其速度恰好与传送带的速度相同,根据动能定理或牛顿第二定律、运动学公式求解动摩擦因数;(3)根据运动学公式求出滑块从B到C的运动时间,即可求出此时间内传送带的位移,得到滑块与传送带的相对位移,摩擦而产生的热量Q等于滑动摩擦力与相对位移大小的乘积解答:解:(1)滑块从A运动到B的过程中,由机械能守恒定律得:mgR=解得:=2m/s在B点:Nmg=m代入解得:N=60N由牛顿第三定律可知,滑块对轨道的压力为N=N=60N,方向竖直向下(2)滑块从B运动到C的过程中,根据牛顿第二定律得:mg=ma又:联立上两式解得:=0.3(3)设滑块从B运动到C的时间为t,加速度:a=g=3m/s2由v0=vB+at,得:t=s=在这段时间内传送带的位移为:S传=v0t=传送带与滑块的相对位移为:S=S传L=m故滑块与传送带之间的摩擦而产生的热量:Q=mgS=4J答:(1)滑块到达底端B时对轨道的压力是60N,方向竖直向下;(2)滑块与传送带问的动摩擦因数是0.3;(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q是4J点评:本题是机械能守恒定律、向心力、牛顿第二定律、运动学公式的综合应用,容易出错的地方是:Q=mgL,应根据相对位移求解摩擦生热11相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同ab棒光滑,cd棒与导轨间动摩擦因数为=0.75,两棒总电阻为1.8,导轨电阻不计ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放(1)求出磁感应强度B的大小和ab棒加速度大小;(2)已知在2s内外力F做功40J,求这一过程中两金属棒产生的总焦耳热;(3)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力fcd随时间变化的图象考点:导体切割磁感线时的感应电动势;牛顿第二定律;焦耳定律专题:电磁感应与电路结合分析:(1)由E=BLv、I=、F=BIL、v=at,及牛顿第二定律得到F与时间t的关系式,再根据数学知识研究图象(b)斜率和截距的意义,即可求磁感应强度B的大小和ab棒加速度大小(2)由运动学公式求出2s末金属棒ab的速率和位移,根据动能定理求出两金属棒产生的总焦耳热(3)分析cd棒的运动情况:cd棒先做加速度逐渐减小的加速运动,当cd棒所受重力与滑动摩擦力相等时,速度达到最大;然后做加速度逐渐增大的减速运动,最后停止运动cd棒达到最大速度时重力与摩擦力平衡,而cd棒对导轨的压力等于安培力,可求出电路中的电流,再由E=BLv、欧姆定律求出最大速度解答:解:(1)经过时间t,金属棒ab的速率为:v=at此时,回路中的感应电流为:I=对金属棒ab,由牛顿第二定律得:FBILm1g=m1a由以上各式整理得:F=m1a+m1g+at在图线上取两点:t1=0,F1=11N;t2=2s,F2=14.6N,代入上式得:a=1m/s2 B=1.2T(2)在2s末金属棒ab的速率为:vt=at=2m/s所发生的位移为:s=at2=2m由动能定律得:WFm1gsW安=m1vt2又Q=W安联立以上方程,解得:Q=WFmgsmvt2=401102122=18J(3)cd棒先做加速度逐渐减小的加速运动,当cd棒所受重力与滑动摩擦力相等时,速度达到最大;后做加速度逐渐增大的减速运动,最后停止运动当cd棒速度达到最大时,有:m2g=FN又FN=F安,F安=BIL,整理解得:m2g=BIL,对abcd回路,有:I=得:vm=又 vm=at0代入数据解得:t0=s=2sfcd随时间变化的图象如图所示答:(1)磁感应强度B的大小为1.2T,ab棒加速度大小为1m/s2;(2)这一过程中两金属棒产生的总焦耳热为18J;(3)cd棒先做加速度逐渐减小的加速运动,当cd棒所受重力与滑动摩擦力相等时,速度达到最大;后做加速度逐渐增大的减速运动,最后停止运动cd棒达到最大速度所需的时间t0为2s,cd棒所受摩擦力fcd随时间变化的图象如图所示点评:本题中cd棒先受到滑动摩擦,后受到静摩擦,发生了突变,要仔细耐心分析这个动态变化过程滑动摩擦力与安培力有关,呈现线性增大选修3-412如图所示是一列沿x轴传播的简谐横波在t=0时刻的波形图,质点P的振动方程为y=6sin4t(cm),则这列波的传播速度为8m/s,传播方向为沿x轴方向(填“+x”或“x”)考点:波长、频率和波速的关系专题:振动图像与波动图像专题分析:根据质点P的振动方程,分析t=0时刻质点P的振动方向,即可判断波的传播方向由振动方程读出,由T=求出周期T,由图读出波长,即可求得波速解答:解:根据质点P的振动方程为y=6sin4t(cm),可知t=0时刻质点沿y轴负方向运动,由波形平移法可知该波沿x轴方向传播由P点的振动方程可知=4 rad/s,则该波的周期为 T=s=0.5s由图知波长为 =4m,则波速为 v=m/s=8m/s故答案为:8,x点评:本题中知道质点P的振动方程与知道振动图象一样,心中要有振动曲线,能根据图象读出质点的振动方向,再运用波形平移法判断波的传播方向13“道威棱镜”广泛地应用在光学仪器当中,如图,将一等腰直角棱镜截去棱角,使其平行于底面,可制成“道威棱镜”,这样就减小了棱镜的重量和杂散的内部反射如图所示,从M点发出的一束平行于底边CD的单色光从AC边射入,已知棱镜玻璃的折射率n=求光线进入“道威棱镜”时的折射角,并通过计算判断光线能否从CD边射出考点:光的折射定律专题:光的折射专题分析:根据折射定律算出光线进入“道威棱镜”时的折射角;由公式sinC=计算出从棱镜射向空气的临界角,由几何关系得到折射光线到达CD面的入射角,比较入射角与临界角C的大小解答:解:根据折射定律:n=得:r=30由几何关系知=75根据全反射定律,sinC=得:C=457545,故在CD面发生全反射,没有光线射出;答:光线进入“道威棱镜”时的折射角为30,光线不能从CD边射出点评:本题关键是画出光路图,找出入射角和折射角,掌握折射定律公式n=和全反射定律sinC=选修3-514自然界里放射性核素并非一次衰变就达到稳定,而是发生一系列连续的衰变,直到稳定的核素而终止,这就是“级联衰变”某个钍系的级联衰变过程如图(N轴表示中子数,Z轴表示质子数),图中PbBi的衰变是衰变,从Th到208Pb共发生6次衰变考点:原子核衰变及半衰期、衰变速度专题:衰变和半衰期专题分析:根据衰变的过程中电荷数少2,质量数少4,衰变的过程中电荷数多1,质量数不变,进行判断解答:解:因为在衰变的过程中,横坐标不是多1,就是少2,知横坐标为电荷数,即质子数纵坐标少2或少1,知纵坐标表示中子数图中PbBi的衰变质量数增加1,是衰变,从ThPo,质子数少8,中子数少16,则质量数少24,所以总共发生=6次衰变故答案为:,6点评:解决本题的关键知道衰变的实质,知道衰变的过程中电荷数守恒、质量数守恒15光滑水平轨道上有三个木块A、B、C,质量分别为mA=3m、mB=mC=m,开始时B、C均静止,A以初速度o向右运动,A与B相撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变求B与C碰撞前B的速度大小考点:动量守恒定律专题:压轴题分析:A与B相撞,B又与C发生碰撞,根据动量守恒定律列出等式求解解答:解:设A与B碰撞后,A的速度为vA,B与C碰撞前B的速度为vB,B与C碰撞后粘在一起的速度为v,由动量守恒定律得对A、B木块:mAv0=mAvA+mBvB对B、C木块:mBvB=(mB+mC)v由A与B间的距离保持不变可知vA=v联立式,代入数据得vB=v0答:B与C碰撞前B的速度大小是v0点评:本题分两个物理过程研究:A与B相撞,B又与C发生碰撞的过程,基本的思路是动量守恒应用
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!