2019-2020年高考数学总复习 专题11 概率和统计分项练习(含解析)文.doc

上传人:tian****1990 文档编号:2734628 上传时间:2019-11-29 格式:DOC 页数:15 大小:1.71MB
返回 下载 相关 举报
2019-2020年高考数学总复习 专题11 概率和统计分项练习(含解析)文.doc_第1页
第1页 / 共15页
2019-2020年高考数学总复习 专题11 概率和统计分项练习(含解析)文.doc_第2页
第2页 / 共15页
2019-2020年高考数学总复习 专题11 概率和统计分项练习(含解析)文.doc_第3页
第3页 / 共15页
点击查看更多>>
资源描述
2019-2020年高考数学总复习 专题11 概率和统计分项练习(含解析)文一基础题组1. 【xx课标全国,文3】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A B C D【答案】B【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为.2. 【xx课标,文6】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) ,A. B. C. D.【答案】A【解析】因为每位同学参加各个小组的可能性相等,所以所求概率为,选A.3. 【xx全国1,文2】掷一个骰子,向上一面的点数大于2且小于5的概率为,抛两枚硬币,正面均朝上的概率为,则( )A B C D.不能确定【答案】B4. 【xx新课标1,文4】如图,正方形ABCD内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是A BCD【答案】B【解析】试题分析:不妨设正方形边长为,由图形的对称性可知,太极图中黑、白部分面积相等,即各占圆面积的一半由几何概型概率的计算公式得,所求概率为,选B【考点】几何概型5.【xx新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是,(A) (B) (C) (D)【答案】C【解析】试题分析:将4种颜色的花种任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一个花坛的种数有4种,故所求概率为,选C.【考点】古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答中的常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.6. 【xx高考新课标1,文4】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A) (B) (C) (D)【答案】C【解析】从中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.【考点定位】古典概型7. 【xx新课标1,文2】为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别为x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是Ax1,x2,xn的平均数Bx1,x2,xn的标准差Cx1,x2,xn的最大值Dx1,x2,xn的中位数【答案】B【解析】试题分析:评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.【考点】样本特征数二能力题组1. 【xx全国1,文13】从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):,492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g501.5g之间的概率约为_。【答案】:【解析】由已知中抽取20袋,各袋的质量为(单位:g):492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499其中食盐质量在497.5g501.5g之间有498 501 500 501 499共5袋故自动包装机包装的袋装食盐质量在497.5g501.5g之间的概率.2. 【xx全国1,文18】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:,质量指标值分组75,85)85,95)95,105)105,115)115, 125)频数62638228(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【解析】(1)(2)质量指标值的样本平均数为.质量指标值的样本方差为.所以这种产品质量指标值3. 【xx课标全国,文18】(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)试验的观测结果如下:,服用A药的20位患者日平均增加的睡眠时间:0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【解析】:(1)设A药观测数据的平均数为,B药观测数据的平均数为.由观测结果可得(0.61.21.21.51.51.82.22.32.32.42.52.62.72.72.82.93.03.13.23.5)2.3,(0.50.50.60.80.91.11.21.21.31.41.61.71.81.92.12.42.52.62.73.2)1.6.由以上计算结果可得,因此可看出A药的疗效更好(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好4. 【xx全国1,文20】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换每次发球,胜方得1分,负方得0分设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立甲、乙的一局比赛中,甲先发球(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率,(1)BA0AA1,P(A)0.4,P(A0)0.420.16,P(A1)20.60.40.48,P(B)P(A0AA1)P(A0A)P(A1)P(A0)P(A)P(A1)P()0.160.40.48(10.4)0.352.(2) P(B0)0.620.36,P(B1)20.40.60.48,P(B2)0.420.16,P(A2)0.620.36.CA1B2A2B1A2B2P(C)P(A1B2A2B1A2B2)P(A1B2)P(A2B1)P(A2B2)P(A1)P(B2)P(A2)P(B1)P(A2)P(B2)0.480.160.360.480.360.160.307 2.5. 【xx全国1,文19】投到某杂志的稿件,先由两位初审专家进行评审若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审(1)求投到该杂志的1篇稿件被录用的概率;,(2)求投到该杂志的4篇稿件中,至少有2篇被录用的概率(2)记A0表示事件:4篇稿件中没有1篇被录用;A1表示事件:4篇稿件中恰有1篇被录用;A2表示事件:4篇稿件中至少有2篇被录用A0A1.P(A0)(10.4)40.129 6,P(A1)0.4(10.4)30.345 6,P()P(A0A1)P(A0)P(A1)0.129 60.345 60.475 2,P(A2)1P()10.475 20.524 8. 6. 【xx全国1,文20】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物血液化验结果呈阳性的即为患病动物,呈阴性即没患病下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止,方案乙:先任取3只,将它们的血液混在一起化验若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验求依方案甲所需化验次数不少于依方案乙所需化验次数的概率【解析】:设、分别表示依方案甲需化验1次、2次。表示依方案乙需化验3次;三拔高题组1. 【xx新课标,文19】(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质产品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:,A配方的频数分布表指标值分组频数B配方的频数分布表指标值分组频数()分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【思路点拨】第()问分别用配方、配方生产的产品中优质品的频率来估计概率,第(II)问,用B配方生产的一件产品的利润大于0时即质量指标时,求时的频率作为概率,生产的100件产品中平均一件的利润为.,2. 【xx全国1,文18】(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买。根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元。()求3位购买该商品的顾客中至少有1位采用一次性付款的概率;()求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率。,【解析】:()记表示事件:“位顾客中至少位采用一次性付款”,则表示事件:“位顾客中无人采用一次性付款”.,.()记表示事件:“位顾客每人购买件该商品,商场获得利润不超过元”.表示事件:“购买该商品的位顾客中无人采用分期付款”.表示事件:“购买该商品的位顾客中恰有位采用分期付款”.则.,.3. 【xx高考新课标1,文19】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值. ,46.656.36.8289.81.61469108.8表中= , =(I)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;(III)已知这种产品的年利润z与x,y的关系为 ,根据(II)的结果回答下列问题:(i)当年宣传费时,年销售量及年利润的预报值时多少?(ii)当年宣传费为何值时,年利润的预报值最大?附:对于一组数据,,,其回归线的斜率和截距的最小二乘估计分别为:,,【答案】()适合作为年销售关于年宣传费用的回归方程类型()()46.24【解析】()令,先建立关于的线性回归方程,由于=,=563-686.8=100.6.关于的线性回归方程为,关于的回归方程为.6分()()由()知,当=49时,年销售量的预报值=576.6,. 9分()根据()的结果知,年利润z的预报值4.【xx新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:,记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.()若=19,求y与x的函数解析式;()若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;()假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】();()19;()19.【解析】试题分析:()分x19及x19,分别求解析式;()通过频率大小进行比较;()分别求出n=19,n=20时所需费用的平均数来确定.试题解析:()当时,;当时,所以与的函数解析式为.()由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19.()若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为.5. 【xx全国1,文19】根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立. , (1)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (2)求该地3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【分析】此题第(1)问所求概率可以看作“该地的1位车主购买乙种保险但不购买甲种保险”和“该地的1位车主购买甲种保险”两个事件的和.由于这两个事件互斥,故利用互斥事件概率计算公式求解.(2).此问关键是求出“该地的1位车主甲、乙两种保险都不购买”的概率,然后再借助n次独立重复试验发生k次的概率计算公式求解即可.【解析】()设所求概率为,则故该地1位车主至少购买甲、乙两种保险中的l种的概率为0.8.()对每位车主甲、乙两种保险都不购买的概率为于是所求概率为:6. 【xx全国卷,文20】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局. ,(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【解析】:记Ai表示事件:第i局甲获胜,i=3,4,5.Bj表示事件:第j局乙获胜,j=3,4.(1)记A表示事件:再赛2局结束比赛A=A3A4+B3B4.由于各局比赛结果相互独立,故P(A)=P(A3A4+B3B4)=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)=0.60.6+0.40.4=0.52.7. 【xx新课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm)下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得,其中为抽取的第个零件的尺寸,(1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小)(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()从这一天抽检的结果看,是否需对当天的生产过程进行检查?()在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差(精确到0.01),附:样本的相关系数,【答案】(1),可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小;(2)()需对当天的生产过程进行检查;()均值与标准差的估计值分别为10.02,0.09【解析】试题解析:(1)由样本数据得的相关系数为由于,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(2)(i)由于,由样本数据可以看出抽取的第13个零件的尺寸在以外,因此需对当天的生产过程进行检查(ii)剔除离群值,即第13个数据,剩下数据的平均数为,这条生产线当天生产的零件尺寸的均值的估计值为10.02,剔除第13个数据,剩下数据的样本方差为,这条生产线当天生产的零件尺寸的标准差的估计值为4【考点】相关系数,方差、均值的计算
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!