2019-2020年中考数学 知识点聚焦 第五章 分式.doc

上传人:tian****1990 文档编号:2692277 上传时间:2019-11-28 格式:DOC 页数:4 大小:73KB
返回 下载 相关 举报
2019-2020年中考数学 知识点聚焦 第五章 分式.doc_第1页
第1页 / 共4页
2019-2020年中考数学 知识点聚焦 第五章 分式.doc_第2页
第2页 / 共4页
2019-2020年中考数学 知识点聚焦 第五章 分式.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
2019-2020年中考数学 知识点聚焦 第五章 分式高频考点考查频率所占分值1分式有无意义的条件2分式的值为0的条件3分式的基本性质4分工的约分、通分5分式的加减法310分6分式的乘除法7分式的混合运算8分式的化简、求值知能图谱分式的有关概念通分最简公分母分式的基本性质依据:分式的基本性质,(是不等于0的整式)关键:确定最简公分母分式依据:分式的基本性质约分方法:最简分式或整式关键:确定分子与分母的公因式分式的加减分式的运算分式的乘除分式的混合运算:结果化为最简分式或整式第11讲 分式及其性质知识能力解读知能解读 (一)分式的概念一般地,如果,表示两个整式,并且中含有字母,那么式子叫作分式分式会中叫作分子,叫作分母注意:(1)判断一个式子是否为分式,关键是看分母中是否有字母(2)分式与整式的根本区别:分式的分母中含有字母,如,是整式,而是分式(3)分式有无意义的条件:若,则分式有意义;若,则分式无意义(4)分式的值为零的条件:若,则分式的值为零,反之也成立(二)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)同一个不等于0的整式,分式的值不变用式子表示是:,其中,是整式注意:(1)分式的基本性质可类比分数的基本性质去理解记忆利用分式的基本性质,可以在不改变分式的值的条件下,对分式作一系列的变形(2)当分式的分子(或分母)是多项式,运用分式的基本性质时,要先把分式的分子(或分母)用括号括上再将分子与分母同乘(或除以)相同的整式(三)约分、最简分式及通分的概念(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫作分式的约分说明:约分的关键是准确找出分子与分母的公因式,找公因式的方法:(1)当分子和分母都是单项式时,先找出它们系数的最大公约数,再确定相同字母的最低次幂,它们的乘积就是分子与分母的公因式(2)当分子、分母是多项式时,先将分子、分母因式分解,把分子、分母化为几个因式的积后,再找出分子、分母的公因式约分应注意一定要把公因式约尽,还应注意分子、分母的整体都要除以同一个公因式当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项例如是错误的(2)最简分式:分子与分母没有公因式的分式叫作最简分式判断一个分式是否为最简分式,关键是确定其分子与分母是否有公因式(1除外)分式的约分,一般要约去分子和分母的所有公因式,使所得结果成为最简分式或整式注意:(1)最简分式与小学学过的最简分数类似(2)最简分式是对一个独立的分式而言的,最大的特点是只有一条分数线形如,的分式都不是最简分式(3)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分通分的关键是确定几个分式的最简公分母(4)最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母注意:确定最简公分母的一般方法:(1)如果各分母都是单项式,确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母,连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的这样得到的积就是最简公分母(2)如果各分母都是多项式,就要把它们分解因式,再按照分母是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去求方法技巧归纳方法技巧 (一)应用分式概念解题的规律1分式的判别方法根据定义判定式子是否为分式要注意两点:一是,都是整式,二是中含字母且判断一个代数式是否为分式,还应注意不能把原式变形(如约分等),而只能根据它的最初形式进行判断如根据,判定不是分式,这是错误的2对分式有无意义或值为0的条件判断(二)分式基本性质的应用分式的基本性质是分式恒等变形和分式运算的理论依据,正确理解和熟练掌握这一性质是学好分式的关键利用分式的基本性质可将分式恒等变形,化简分式,简化计算等1约分2通分(三)分式值的特殊情况(拓展)1分式的值为1或的讨论若分成,则,反之也成立;若分式,则与互为相反数,反之也成立2分式的值为正数的讨论分式的值为正数时,分式的分子与分母同号,利用这一关系构造不等式组可求出待定字母的取值范围3分式的值为负数的讨论分式的值为负数时,分式的分子与分母异号,利用这一关系构造不等式组可求出待定字母的取值范范围4分式的值为整数的讨论若分式的值为整数,则分母必为分子的约数,利用这一关系可对分母进行讨论易混易错辨析易混易错知识1误认为只要分子等于0,就能使分式的值为02利用分式基本性质把分子、分母都乘(或除以)非零整式时,只乘(或除以)其中某些项,有漏乘(或漏除)的项3分式变号时极易出错,易误只将分子或分母的第一项改变符号易混易错 (一)分式基本性质的误用(二)忽视分式值为0的前提条件(三)约分时易出现符号错误(四)确定最简公分母出错中考试题研究中考命题规律本讲考点是考查分式有无意义、分式的值为零条件的判断,以及用分式基本性质进行变形;以填空题、选择题及简单的解答题的形式出现中考试题 (一)对分式概念的理解(二)分式基本性质的应用(三)确定最简公分母第12讲 分式的运算知识能力解读知能解读 (一)分式的乘除法分式的乘除法与分数的乘除法类似,法则如下:(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示是:(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示是:(3)分式的乘方:分式乘方要把分子、分母分别乘方,用式子表示是:(是正整数)注意:(1)法则中的字母,所代表的可以是单项式,也可以是多项式(2)运算的结果必须是最简分式或整式(二)分式的加减法1同分母分式加减法的法则与同分母的分数加减法类似,同分母分式相加减,分母不变,把分子相加减用式子表示是:注意:(1)“同分母分式相加减”是把各个分式的“分子的整体”相加减,即当分子是多项式时,应将各分子加括号,括号不能省略,(2)运算结果必须化为最简分式或整式2异分母分式加减法的法则与异分母的分数加减法类似,异分母分式相加减,先通分,变为同分母的分式,再加减用式子表示是:(三)分式的混合运算分式的混合运算的顺序是:先乘方,再乘除,最后算加减;遇到括号,先算括号内的;在同级运算中,从左向右依次进行注意:(1)实数的运算律对分式同样适用,注意灵活运用,提高解题的质量和速度(2)结果必须化为最简分式或整式(3)分子或分母的系数是负数时,要把“”提到分数线的前边(4)对于分式的乘除混合运算,应先将除法运算转化为乘法运算,分子、分母是多项式时,可先将分子、分母分解因式,再相乘方法技巧归纳方法技巧 (一)分式的乘除法及乘方运算的解题技巧1分式的乘除法分式的乘除运算可以统一成乘法运算,分式的乘法一般情况下是先约分再相乘,这样做省时简单易行,又不易出错;当除式(或被除式)是整式时,可以看作分母是1的式子,然后再按分式的乘除法则计算2分式的乘方做分式乘方时,一是注意养成先确定结果的符号,再做其他运算的良好习惯;二是注意运算顺序,先乘方,再乘除,最后加减(二)分式加减运算的解题技巧分式的加减法与分数的加减法的运算法则实质是相同的,分为同分母加减法和异分母加减法,所不同的是分式的加减运算比分数的加减运算要复杂得多,它是整式运算、因式分解和分式运算的综合运用分式加减运算需要运用较多的基础知识,运算步骤增多,符号变换复杂,解题方法灵活多样(三)分式化简、求值的解题技巧分式的化简、求值问题,一是化简要求值的分式,只要能化简就考虑化简;二是化简已知条件,化到最简后,再考虑代入求值(四)分式混合运算的解题技巧分式的混合运算,除了掌握运算顺序外,在运算过程中,可灵活运用交换律、结合律、分配律使运算简化,值得提醒的是最后结果必须是最简分式或整式(五)分式通分的解题技巧分式的加减运算,分同分母分式相加减和异分母分式相加减,对于异分母分式的加减法,有时直接通分会很繁琐,我们可以根据式子的特点,灵活的采用不同的方法通分,从而起到事半功倍的效果1分组通分2逐项通分3公式的运用易混易错辨析易混易错知识在分式的乘除运算或混合运算中,运算顺序易出错在分式的混合运算中,若有括号,先算括号里面的,同级运算应按从左到右的顺序依次进行易混易错 (一)运算顺序有误(二)分子符号出错(三)运算结果不是最简分式(四)错用运算律中考试题研究中考命题规律本讲考查的知识面广,综合性强中考热点是分式的运算及分式的化简、求值,常与二次根式、三角函数等知识结合起来命题,题型以解答题为主,也出现填空题近几年又出现了开放式的新题型,应给予关注中考试题 (一)分式的加减(二)分式的乘除(三)分式的混合运算(四)分式的化简求值
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!