2019-2020年高中数学 第一章《分类加法计数原理和分步乘法计数原理》教案2 新人教A版选修2-3.doc

上传人:tian****1990 文档编号:2597411 上传时间:2019-11-28 格式:DOC 页数:2 大小:327KB
返回 下载 相关 举报
2019-2020年高中数学 第一章《分类加法计数原理和分步乘法计数原理》教案2 新人教A版选修2-3.doc_第1页
第1页 / 共2页
2019-2020年高中数学 第一章《分类加法计数原理和分步乘法计数原理》教案2 新人教A版选修2-3.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高中数学 第一章分类加法计数原理和分步乘法计数原理教案2 新人教A版选修2-32 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和19九个阿拉伯数字,以,,,的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码: 我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 69 = 54 个不同的号码(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法. 那么完成这件事共有 种不同的方法.(3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤第 l 步选男生第2步选女生解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择根据分步乘法计数原理,共有3024 =720种不同的选法一般归纳: 完成一件事情,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法做第n步有种不同的方法.那么完成这件事共有种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3理解分类加法计数原理与分步乘法计数原理异同点相同点:都是完成一件事的不同方法种数的问题不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种? 解: 按地图A、B、C、D四个区域依次分四步完成, 第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种,所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 2 11 = 6
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!