资源描述
2019-2020年高中信息技术 全国青少年奥林匹克联赛教案 枚举法枚举法,常常称之为穷举法,是指从可能的集合中一一枚举各个元素,用题目给定的约束条件判定哪些是无用的,哪些是有用的。能使命题成立者,即为问题的解。采用枚举算法解题的基本思路:(1) 确定枚举对象、枚举范围和判定条件;(2) 一一枚举可能的解,验证是否是问题的解下面我们就从枚举算法的的优化、枚举对象的选择以及判定条件的确定,这三个方面来探讨如何用枚举法解题。枚举算法应用例1:百钱买百鸡问题:有一个人有一百块钱,打算买一百只鸡。到市场一看,大鸡三块钱一只,小鸡一块钱三只,不大不小的鸡两块钱一只。现在,请你编一程序,帮他计划一下,怎么样买法,才能刚好用一百块钱买一百只鸡?算法分析:此题很显然是用枚举法,我们以三种鸡的个数为枚举对象(分别设为x,y,z),以三种鸡的总数(x+y+z)和买鸡用去的钱的总数(x*3+y*2+z)为判定条件,穷举各种鸡的个数。下面是解这个百鸡问题的程序var x,y,z:integer;beginfor x:=0 to 100 do for y:=0 to 100 dofor z:=0 to 100 do枚举所有可能的解if (x+y+z=100)and(x*3+y*2+z div 3=100)and(z mod 3=0)then writeln(x=,x,y=,y,z=,z); 验证可能的解,并输出符合题目要求的解end.上面的条件还有优化的空间,三种鸡的和是固定的,我们只要枚举二种鸡(x,y),第三种鸡就可以根据约束条件求得(z=100-x-y),这样就缩小了枚举范围,请看下面的程序:var x,y,z:integer;begin for x:=0 to 100 dofor y:=0 to 100-x dobegin z:=100-x-y; if (x*3+y*2+z div 3=100)and(z mod 3=0)then writeln(x=,x,y=,y,z=,z);end;end.未经优化的程序循环了1013 次,时间复杂度为O(n3);优化后的程序只循环了(102*101/2)次 ,时间复杂度为O(n2)。从上面的对比可以看出,对于枚举算法,加强约束条件,缩小枚举的范围,是程序优化的主要考虑方向。在枚举算法中,枚举对象的选择也是非常重要的,它直接影响着算法的时间复杂度,选择适当的枚举对象可以获得更高的效率。如下例:例2、将1,2.9共9个数分成三组,分别组成三个三位数,且使这三个三位数构成1:2:3的比例,试求出所有满足条件的三个三位数.例如:三个三位数192,384,576满足以上条件.(NOIPxxpj)算法分析:这是xx年全国分区联赛普及组试题(简称NOIPxxpj,以下同)。此题数据规模不大,可以进行枚举,如果我们不加思地以每一个数位为枚举对象,一位一位地去枚举:for a:=1 to 9 do for b:=1 to 9 dofor i:=1 to 9 do这样下去,枚举次数就有9次,如果我们分别设三个数为x,2x,3x,以x为枚举对象,穷举的范围就减少为,在细节上再进一步优化,枚举范围就更少了。程序如下:var t,x:integer; s,st:string; c:char;begin for x:=123 to 321 do枚举所有可能的解 begin t:=0; str(x,st);把整数x转化为字符串,存放在st中 str(x*2,s); st:=st+s; str(x*3,s); st:=st+s; for c:=1 to 9 do枚举9个字符,判断是否都在st中 if pos(c,st)0 then inc(t) else break;如果不在st中,则退出循环if t=9 then writeln(x, ,x*2, ,x*3); end;end.在枚举法解题中,判定条件的确定也是很重要的,如果约束条件不对或者不全面,就穷举不出正确的结果,我们再看看下面的例子。例 一元三次方程求解(noipxxtg)问题描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。提示:记方程f(x)=0,若存在2个数x1和x2,且x1x2,f(x1)*(x2)0,则在(x1,x2)之间一定有一个根。样例输入:1 -5 -4 20输出:-2.00 2.00 5.00算法分析:由题目的提示很符合二分法求解的原理,所以此题可以用二分法。用二分法解题相对于枚举法来说很要复杂很多。此题是否能用枚举法求解呢?再分析一下题目,根的范围在-100到100之间,结果只要保留两位小数,我们不妨将根的值域扩大100倍(-10000=x=10000),再以根为枚举对象,枚举范围是-10000到10000,用原方程式进行一一验证,找出方程的解。有的同学在比赛中是这样做var k:integer; a,b,c,d,x :real;begin read(a,b,c,d); for k:=-10000 to 10000 do begin x:=k/100; if a*x*x*x+b*x*x+c*x+d=0 then write(x:0:2, ); end;end.用这种方法,很快就可以把程序编出来,再将样例数据代入测试也是对的,等成绩下来才发现这题没有全对,只得了一半的分。这种解法为什么是错的呢?错在哪里?前面的分析好象也没错啊,难道这题不能用枚举法做吗? 看到这里大家可能有点迷惑了。在上面的解法中,枚举范围和枚举对象都没有错,而是在验证枚举结果时,判定条件用错了。因为要保留二位小数,所以求出来的解不一定是方程的精确根,再代入ax3+bx2+cx+d中,所得的结果也就不一定等于0,因此用原方程ax3+bx2+cx+d=0作为判断条件是不准确的。我们换一个角度来思考问题,设f(x)=ax3+bx2+cx+d,若x为方程的根,则根据提示可知,必有f(x-0.005)*(x+0.005)0,如果我们以此为枚举判定条件,问题就逆刃而解。另外,如果f(x-0.005)=0,哪么就说明x-0.005是方程的根,这时根据四舍5入,方程的根也为x。所以我们用(f(x-0.005)*f(x+0.005)0) 和 (f(x-0.005)=0)作为判定条件。为了程序设计的方便,我们设计一个函数f(x)计算ax3+bx2+cx+d的值,程序如下:$N+var k:integer; a,b,c,d,x:extended;function f(x:extended):extended; 计算ax3+bx2+cx+d的值begin f:=(a*x+b)*x+c)*x+d;end;begin read(a,b,c,d); for k:=-10000 to 10000 do beginx:=k/100; if (f(x-0.005)*f(x+0.005)0) or (f(x-0.005)=0) then write(x:0:2, ); 若x两端的函数值异号或x-0.005刚好是方程的根,则确定x为方程的根 end;end.用枚举法解题的最大的缺点是运算量比较大,解题效率不高,如果枚举范围太大(一般以不超过两百万次为限),在时间上就难以承受。但枚举算法的思路简单,程序编写和调试方便,比赛时也容易想到,在竞赛中,时间是有限的,我们竞赛的最终目标就是求出问题解,因此,如果题目的规模不是很大,在规定的时间与空间限制内能够求出解,那么我们最好是采用枚举法,而不需太在意是否还有更快的算法,这样可以使你有更多的时间去解答其他难题。
展开阅读全文