2019-2020年高中数学《任意角的三角函数》教案3 苏教版必修4.doc

上传人:tian****1990 文档编号:2572143 上传时间:2019-11-27 格式:DOC 页数:5 大小:72KB
返回 下载 相关 举报
2019-2020年高中数学《任意角的三角函数》教案3 苏教版必修4.doc_第1页
第1页 / 共5页
2019-2020年高中数学《任意角的三角函数》教案3 苏教版必修4.doc_第2页
第2页 / 共5页
2019-2020年高中数学《任意角的三角函数》教案3 苏教版必修4.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019-2020年高中数学任意角的三角函数教案3 苏教版必修4一、课题:任意角的三角函数(1)二、教学目标:1.掌握任意角的三角函数的定义;2.已知角终边上一点,会求角的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。三、教学重、难点:根据定义求三角函数值。 四、教学过程:(一)复习:初中锐角的三角函数是如何定义的?在中,设对边为,对边为,对边为,锐角的正弦、余弦、正切依次为 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。(二)新课讲解:1三角函数定义在直角坐标系中,设是一个任意角,终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么(1)比值叫做的正弦,记作,即;(2)比值叫做的余弦,记作,即;(3)比值叫做的正切,记作,即;(4)比值叫做的余切,记作,即;(5)比值叫做的正割,记作,即;(6)比值叫做的余割,记作,即说明:的始边与轴的非负半轴重合,的终边没有表明一定是正角或负角,以及的大小,只表明与的终边相同的角所在的位置; 根据相似三角形的知识,对于确定的角,六个比值不以点在的终边上的位置的改变而改变大小;当时,的终边在轴上,终边上任意一点的横坐标都等于,所以与无意义;同理,当时,与无意义;除以上两种情况外,对于确定的值,比值、分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。2三角函数的定义域、值域函 数定 义 域值 域3例题分析例1 已知角的终边经过点,求的六个函数制值。解:因为,所以,于是; ; 例2 求下列各角的六个三角函数值:(1);(2);(3) 解:(1)因为当时,所以, , , 不存在, 不存在。(2)因为当时,所以, , , 不存在, 不存在。(3)因为当时,所以, , 不存在, ,不存在, 例3 已知角的终边过点,求的六个三角函数值。解:因为过点,所以, 当; ;当; ;4三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:正弦值对于第一、二象限为正(),对于第三、四象限为负();余弦值对于第一、四象限为正(),对于第二、三象限为负();正切值对于第一、三象限为正(同号),对于第二、四象限为负(异号)说明:若终边落在轴线上,则可用定义求出三角函数值。5诱导公式由三角函数的定义,就可知道:终边相同的角三角函数值相同。即有:,其中,(练习)确定下列三角函数值的符号:(1);(2);(3);(4)五、小结:1任意角的三角函数的定义; 2三角函数的定义域、值域;3三角函数的符号及诱导公式。六、作业: 补充:已知点,在角的终边上,求、的值。 1.2.1 任意角的三角函数(2)一、课题:任意角的三角函数(2)二、教学目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值; 3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。三、教学重点:正弦、余弦、正切线的概念及利用。四、教学过程:(一)复习:(提问)1三角函数的定义及定义域、值域:练习1:已知角的终边上一点,且,求的值。解:由题设知,所以,得,从而,解得或当时, ;当时,;当时,2三角函数的符号:练习2:已知且,(1)求角的集合;(2)求角终边所在的象限;(3)试判断的符号。3诱导公式:练习3:求下列三角函数的值:(1), (2), (3) (二)新课讲解:当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示三角函数线。1单位圆:圆心在圆点,半径等于单位长的圆叫做单位圆。2有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。规定:与坐标轴方向一致时为正,与坐标方向相反时为负。3三角函数线的定义:设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点P,过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.()()()()由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有, ,我们就分别称有向线段为正弦线、余弦线、正切线。说明:三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与的终边的交点。三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的为负值。三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。4例题分析:例1 作出下列各角的正弦线、余弦线、正切线。(1); (2); (3); (4)解:图略。例2 利用单位圆写出符合下列条件的角的范围。(1); (2); (3)且;(4); (5)且答案:(1);(2);(3);(4);(5)五、小结:1三角函数线的定义;2会画任意角的三角函数线3利用单位圆比较三角函数值的大小,求角的范围。六、作业: 1利用余弦线比较的大小; 2若,则比较、的大小;3分别根据下列条件,写出角的取值范围: (1) ; (2) ; (3)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!