2019-2020年高三数学一轮复习 第七章 不等式、推理与证明第四节 基本不等式及其应用练习.doc

上传人:tia****nde 文档编号:2452388 上传时间:2019-11-25 格式:DOC 页数:5 大小:61KB
返回 下载 相关 举报
2019-2020年高三数学一轮复习 第七章 不等式、推理与证明第四节 基本不等式及其应用练习.doc_第1页
第1页 / 共5页
2019-2020年高三数学一轮复习 第七章 不等式、推理与证明第四节 基本不等式及其应用练习.doc_第2页
第2页 / 共5页
2019-2020年高三数学一轮复习 第七章 不等式、推理与证明第四节 基本不等式及其应用练习.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019-2020年高三数学一轮复习 第七章 不等式、推理与证明第四节 基本不等式及其应用练习一、选择题(65分30分)1(xx天津高考)设a0,b0,若是3a与3b的等比中项,则的最小值为()A8B4C1 D.解析:由题意知3a3b3,即3ab3,所以ab1.因为a0,b0,所以(ab)222 4,当且仅当ab时,等号成立答案:B2(xx开封模拟)已知x0,y0,lg2xlg8ylg2,则的最小值是()A2 B2C4 D2解析:因为x0,y0,且lg2xlg8ylg2,所以x3y1,于是有(x3y)()2()4.答案:C3函数f(x)的最大值为()A. B.C. D1解析:显然x0.x0时,f(x)0;当x0时,x12,f(x),当且仅当x1时,取等号,f(x)max.答案:B4(xx重庆高考)已知a0,b0,则2的最小值是()A2 B2C4 D5解析:2224.当且仅当时,等号成立,即ab1,不等式取最小值4.答案:C5已知不等式(xy)()9对任意正实数x,y恒成立,则正实数a的最小值为()A8 B6C4 D2解析:(xy)()1aaa12 a21,当且仅当a等号成立,所以()2219,即()2280,得2或4(舍),所以a4,即a的最小值为4.答案:C6(xx长春质检)某学生用一不准确的天平(两臂不等长)称10 g药品,他先将5 g的砝码放在左盘,将药品放在右盘使之平衡;然后又将5 g的砝码放在右盘,将药品放在左盘使之平衡,则此学生实际所得药品()A小于10 g B大于10 gC大于等于10 g D小于等于10 g解析:设左、右臂长分别为t1、t2,第一次称的药品为x1,第二次称的药品为x2,则有5t1x1t2,x2t15t2,所以x1x25()5210,即大于10 g.答案:B二、填空题(35分15分)7(xx济宁模拟)函数y(x1)的图象的最低点坐标是_解析:y(x1)2,当且仅当x0时,取等号答案:(0,2)8函数yax1(a0,且a1)的图象恒过定点A,若点A在一次函数ymxn的图象上,其中m,n0,则的最小值为_解析:由题知A(1,1),mn1,m,n0.24.答案:49(xx忻州模拟)设x,y,z为正实数,满足x2y3z0,则的最小值是_解析:由x2y3z0得y,代入得3,当且仅当x3z时取“”答案:3三、解答题(共37分)10(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间的函数关系式为y(v0)(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时);(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?解析:(1)依题意,y,当且仅当v,即v40时,上式等号成立所以ymax11.1(千辆/小时)所以当v40千米/小时时,车流量最大,最大车流量约为11.1千辆/小时(2)由条件得10,整理得v289v1 6000,即(v25)(v64)0,解得25v64.所以如果要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应大于25千米/小时且小于64千米/小时11(理)(12分)(xx福州质检)(1)已知a,b是正常数,ab,x,y(0,),求证:,并指出等号成立的条件(2)求函数f(x),x(0,)的最小值,指出取最小值时x的值(1)证明:a,b,x,y都是正数,()(xy)a2b2a2b22ab(ab)2,当且仅当,即bxay时取“”,当且仅当bxay时等号成立(2)0x,012x1,求函数y的最小值(2)求yx(a2x)(0x1,y(x1)52 59.当且仅当x1,即x1时取等号函数的最小值为9.(2)0x0,yx(a2x)2x(a2x)()2.当且仅当2xa2x,即x时取等号,当x时,函数的最大值为.12(13分)(xx南通模拟)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1和环公园人行道(阴影部分)组成已知休闲区A1B1C1D1的面积为4 000平方米,人行道的宽分别为4米和10米(如图)(1)若设休闲区的长和宽的比x,求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?解析:(1)设休闲区的宽B1C1为a米,则其长A1B1为ax米,a2x4 000a,S(a8)(ax20)a2x(8x20)a1604 000(8x20)16080(2)4 160(x1)(2)S1 6004 1605 760(当且仅当2x2.5),即当x2.5时,公园所占面积最小此时a40,ax100,即休闲区A1B1C1D1的长为100米,宽为40米
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!