数字信号处理上机实验答案第三版.doc

上传人:s****u 文档编号:12740241 上传时间:2020-05-20 格式:DOC 页数:18 大小:317.52KB
返回 下载 相关 举报
数字信号处理上机实验答案第三版.doc_第1页
第1页 / 共18页
数字信号处理上机实验答案第三版.doc_第2页
第2页 / 共18页
数字信号处理上机实验答案第三版.doc_第3页
第3页 / 共18页
点击查看更多>>
资源描述
实验1:系统响应及系统稳定性实验程序清单:close all;clear all%=内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性=A=1,-0.9;B=0.05,0.05; %系统差分方程系数向量B和Ax1n=1 1 1 1 1 1 1 1 zeros(1,50); %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y=h(n);stem(hn, y); %调用函数tstem绘图title(a) 系统单位脉冲响应h(n);y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y=y1(n);stem(y1n, y);title(b) 系统对R8(n)的响应y1(n);y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y=y2(n);stem(y2n, y);title(c) 系统对u(n)的响应y2(n);%=内容2:调用conv函数计算卷积=x1n=1 1 1 1 1 1 1 1 ; %产生信号x1(n)=R8(n)h1n=ones(1,10) zeros(1,10);h2n=1 2.5 2.5 1 zeros(1,10);y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y=h1(n);stem(h1n, y); %调用函数tstem绘图title(d) 系统单位脉冲响应h1(n);subplot(2,2,2);y=y21(n); stem(y21n, y);title(e) h1(n)与R8(n)的卷积y21(n);subplot(2,2,3);y=h2(n); stem(h2n, y); %调用函数tstem绘图title(f) 系统单位脉冲响应h2(n);subplot(2,2,4);y=y22(n);stem(y22n, y);title(g) h2(n)与R8(n)的卷积y22(n);%=内容3:谐振器分析=un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=1,-1.8237,0.9801;B=1/100.49,0,-1/100.49; %系统差分方程系数向量B和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y=y31(n);stem(y31n, y);title(h) 谐振器对u(n)的响应y31(n);subplot(2,1,2);y=y32(n);stem(y32n, y);title(i) 谐振器对正弦信号的响应y32(n);实验程序运行结果及分析讨论程序运行结果如图10.1.1所示。实验内容(2)系统的单位冲响应、系统对 和 的响应序列分别如图(a)、(b)和(c)所示;实验内容(3)系统h1(n)和h2(n)对 的输出响应分别如图(e)和(g)所示;实验内容(4)系统对 和 的响应序列分别如图(h)和(i)所示。由图(h)可见,系统对 的响应逐渐衰减到零,所以系统稳定。由图(i)可见,系统对 的稳态响应近似为正弦序列 ,这一结论验证了该系统的谐振频率是0.4 rad。简答思考题(1) 如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应。对输入信号序列分段;求单位脉冲响应h(n)与各段的卷积;将各段卷积结果相加。具体实现方法有第三章介绍的重叠相加法和重叠保留法。 (2)如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号的剧烈变化将被平滑,由实验内容(1)结果图10.1.1(a)、(b)和(c)可见,经过系统低通滤波使输入信号 、 和 的阶跃变化变得缓慢上升与下降。实验二 时域采样与频域采样(注:本实验程序来自互联网,前半部分运行有误,请同学们自行检察,运行截图是正确的,可作参考)实验程序清单:1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mTp=64/1000;%观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*20.5;omega=pi*50*20.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFTxnt)yn=xa(nT);subplot(3,2,1);stem(xnt,yn);%调用自编绘图函数stem绘制序列图box on;title(a) Fs=1000Hz);k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk);title(a) T*FTxa(nT),Fs=1000Hz);xlabel(f(Hz);ylabel(幅度);axis(0,Fs,0,1.2*max(abs(Xk)%=% Fs=300Hz和 Fs=200Hz的程序与上面Fs=1000Hz完全相同。2 频域采样理论的验证程序清单%频域采样理论验证程序exp2b.mM=27;N=32;n=0:M;%产生M长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=xa,xb;Xk=fft(xn,1024);%1024点FFTx(n), 用于近似序列x(n)的TFX32k=fft(xn,32);%32点FFTx(n)x32n=ifft(X32k);%32点IFFTX32(k)得到x32(n)X16k=X32k(1:2:N);%隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2);%16点IFFTX16(k)得到x16(n)subplot(3,2,2);stem(n,xn,.);box ontitle(b) 三角波序列x(n);xlabel(n);ylabel(x(n);axis(0,32,0,20)k=0:1023;wk=2*k/1024;%subplot(3,2,1);plot(wk,abs(Xk);title(a)FTx(n);xlabel(omega/pi);ylabel(|X(ejomega)|);axis(0,1,0,200)k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),.);box ontitle(c) 16点频域采样);xlabel(k);ylabel(|X_1_6(k)|);axis(0,8,0,200)n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,.);box ontitle(d) 16点IDFTX_1_6(k);xlabel(n);ylabel(x_1_6(n);axis(0,32,0,20)k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),.);box ontitle(e) 32点频域采样);xlabel(k);ylabel(|X_3_2(k)|);axis(0,16,0,200)n1=0:N-1;subplot(3,2,6);stem(n1,x32n,.);box ontitle(f) 32点IDFTX_3_2(k);xlabel(n);ylabel(x_3_2(n);axis(0,32,0,20)实验程序运行结果1 时域采样理论的验证程序运行结果exp2a.m如图10.3.2所示。由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严重。2 时域采样理论的验证程序exp2b.m运行结果如图10.3.3所示。该图验证了频域采样理论和频域采样定理。对信号x(n)的频谱函数X(ej)在0,2上等间隔采样N=16时, N点IDFT得到的序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:由于NM,频域采样定理,所以不存在时域混叠失真,因此。与x(n)相同。简答思考题 先对原序列x(n)以N为周期进行周期延拓后取主值区序列,再计算N点DFT则得到N点频域采样:实验三:用FFT对信号作频谱分析 10.3.2 实验程序清单%第10章实验3程序exp3.m% 用FFT对信号作频谱分析clear all;close all%实验内容(1)=x1n=ones(1,4); %产生序列向量x1(n)=R4(n)M=8;xa=1:(M/2); xb=(M/2):-1:1; x2n=xa,xb; %产生长度为8的三角波序列x2(n)x3n=xb,xa;X1k8=fft(x1n,8); %计算x1n的8点DFTX1k16=fft(x1n,16); %计算x1n的16点DFTX2k8=fft(x2n,8); %计算x1n的8点DFTX2k16=fft(x2n,16); %计算x1n的16点DFTX3k8=fft(x3n,8); %计算x1n的8点DFTX3k16=fft(x3n,16); %计算x1n的16点DFT%以下绘制幅频特性曲线subplot(2,2,1);stem(X1k8); %绘制8点DFT的幅频特性图title(1a) 8点DFTx_1(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X1k8)subplot(2,2,3); stem(X1k16); %绘制16点DFT的幅频特性图title(1b)16点DFTx_1(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X1k16)figure(2)subplot(2,2,1);stem(X2k8); %绘制8点DFT的幅频特性图title(2a) 8点DFTx_2(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X2k8)subplot(2,2,2);stem(X2k16); %绘制16点DFT的幅频特性图title(2b)16点DFTx_2(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X2k16)subplot(2,2,3);stem(X3k8); %绘制8点DFT的幅频特性图title(3a) 8点DFTx_3(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X3k8)subplot(2,2,4);stem(X3k16); %绘制16点DFT的幅频特性图title(3b)16点DFTx_3(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X3k16)%实验内容(2) 周期序列谱分析=N=8;n=0:N-1; %FFT的变换区间N=8x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n); %计算x4n的8点DFTX5k8=fft(x5n); %计算x5n的8点DFTN=16;n=0:N-1; %FFT的变换区间N=16x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n); %计算x4n的16点DFTX5k16=fft(x5n); %计算x5n的16点DFTfigure(3)subplot(2,2,1);stem(X4k8); %绘制8点DFT的幅频特性图title(4a) 8点DFTx_4(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X4k8)subplot(2,2,3);stem(X4k16); %绘制16点DFT的幅频特性图title(4b)16点DFTx_4(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X4k16)subplot(2,2,2);stem(X5k8); %绘制8点DFT的幅频特性图title(5a) 8点DFTx_5(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X5k8)subplot(2,2,4);stem(X5k16); %绘制16点DFT的幅频特性图title(5b)16点DFTx_5(n);xlabel(/);ylabel(幅度);axis(0,2,0,1.2*max(abs(X5k16)%实验内容(3) 模拟周期信号谱分析=figure(4)Fs=64;T=1/Fs;N=16;n=0:N-1; %FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)16点采样X6k16=fft(x6nT); %计算x6nT的16点DFTX6k16=fftshift(X6k16); %将零频率移到频谱中心 Tp=N*T;F=1/Tp; %频率分辨率Fk=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,1);stem(fk,abs(X6k16),.);box on %绘制8点DFT的幅频特性图title(6a) 16点|DFTx_6(nT)|);xlabel(f(Hz);ylabel(幅度);axis(-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16)N=32;n=0:N-1; %FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)32点采样X6k32=fft(x6nT); %计算x6nT的32点DFTX6k32=fftshift(X6k32); %将零频率移到频谱中心 Tp=N*T;F=1/Tp; %频率分辨率Fk=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,2);stem(fk,abs(X6k32),.);box on %绘制8点DFT的幅频特性图title(6b) 32点|DFTx_6(nT)|);xlabel(f(Hz);ylabel(幅度);axis(-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32)N=64;n=0:N-1; %FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)64点采样X6k64=fft(x6nT); %计算x6nT的64点DFTX6k64=fftshift(X6k64); %将零频率移到频谱中心 Tp=N*T;F=1/Tp; %频率分辨率Fk=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,3);stem(fk,abs(X6k64),.); box on%绘制8点DFT的幅频特性图title(6a) 64点|DFTx_6(nT)|);xlabel(f(Hz);ylabel(幅度);axis(-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64)程序运行结果分析讨论:请读者注意,用DFT(或FFT)分析频谱,绘制频谱图时,最好将X(k)的自变量k换算成对应的频率,作为横坐标便于观察频谱。为了便于读取频率值,最好关于归一化,即以作为横坐标。1、实验内容(1)图(1a)和(1b)说明的8点DFT和16点DFT分别是的频谱函数的8点和16点采样;因为,所以,与的8点DFT的模相等,如图(2a)和(3a)。但是,当N=16时,与不满足循环移位关系,所以图(2b)和(3b)的模不同。2、实验内容(2),对周期序列谱分析的周期为8,所以N=8和N=16均是其周期的整数倍,得到正确的单一频率正弦波的频谱,仅在0.25处有1根单一谱线。如图(4b)和(4b)所示。的周期为16,所以N=8不是其周期的整数倍,得到的频谱不正确,如图(5a)所示。N=16是其一个周期,得到正确的频谱,仅在0.25和0.125处有2根单一谱线, 如图(5b)所示。 3、实验内容(3),对模拟周期信号谱分析 有3个频率成分,。所以的周期为0.5s。 采样频率。变换区间N=16时,观察时间Tp=16T=0.25s,不是的整数倍周期,所以所得频谱不正确,如图(6a)所示。变换区间N=32,64 时,观察时间Tp=0.5s,1s,是的整数周期,所以所得频谱正确,如图(6b)和(6c)所示。图中3根谱线正好位于处。变换区间N=64 时频谱幅度是变换区间N=32 时2倍,这种结果正好验证了用DFT对中期序列谱分析的理论。注意:(1)用DFT(或FFT)对模拟信号分析频谱时,最好将X(k)的自变量k换算成对应的模拟频率fk,作为横坐标绘图,便于观察频谱。这样,不管变换区间N取信号周期的几倍,画出的频谱图中有效离散谐波谱线所在的频率值不变,如图(6b)和(6c)所示。(2)本程序直接画出采样序列N点DFT的模值,实际上分析频谱时最好画出归一化幅度谱,这样就避免了幅度值随变换区间N变化的缺点。本实验程序这样绘图只要是为了验证了用DFT对中期序列谱分析的理论。 简答思考题思考题(1)和(2)的答案请读者在教材3.?节找,思考题(3)的答案在程序运行结果分析讨论已经详细回答。实验四IIR数字滤波器设计及软件实现 2、实验程序清单%实验4程序exp4.m% IIR数字滤波器设计及软件实现clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;%低通滤波器设计与实现=fp=280;fs=450;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)N,wp=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wpB,A=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和Ay1t=filter(B,A,st); %滤波器软件实现% 低通滤波器设计与实现绘图部分figure(2);subplot(3,1,1);myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线yt=y_1(t);subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形%带通滤波器设计与实现=fpl=440;fpu=560;fsl=275;fsu=900;wp=2*fpl/Fs,2*fpu/Fs;ws=2*fsl/Fs,2*fsu/Fs;rp=0.1;rs=60; N,wp=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wpB,A=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和Ay2t=filter(B,A,st); %滤波器软件实现% 带通滤波器设计与实现绘图部分(省略)%高通滤波器设计与实现=fp=890;fs=600;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)N,wp=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wpB,A=ellip(N,rp,rs,wp,high); %调用ellip计算椭圆带通DF系统函数系数向量B和Ay3t=filter(B,A,st); %滤波器软件实现% 高低通滤波器设计与实现绘图部分(省略)10.4.3 实验程序运行结果实验4程序exp4.m运行结果如图104.2所示。由图可见,三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。分离出的三路信号y1(n),y2(n)和y3(n)的波形是抑制载波的单频调幅波。(a) 低通滤波器损耗函数及其分离出的调幅信号y1(t)(b) 带通滤波器损耗函数及其分离出的调幅信号y2(t)(c)高通滤波器损耗函数及其分离出的调幅信号y3(t) 图104. 实验4程序exp4.m运行结果10.4.4 简要回答思考题思考题(1)已经在10.4.2节解答。思考题(3)很简单,请读者按照该题的提示修改程序,运行观察。思考题(3) 因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。所以,本题的一般解答方法是,先确定信号st的周期,在判断所给采样点数N对应的观察时间Tp=NT是否为st的整数个周期。但信号产生函数mstg产生的信号st共有6个频率成分,求其周期比较麻烦,故采用下面的方法解答。分析发现,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25400Hz,即在25Hz的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。实验五:FIR数字滤波器设计与软件实现6信号产生函数xtg程序清单function xt=xtg(N)%实验五信号x(t)产生,并显示信号的幅频特性曲线%xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz%载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz.Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt,频率为f0ct=cos(2*pi*fc*t); %产生载波正弦波信号ct,频率为fcxt=mt.*ct; %相乘产生单频调制信号xtnt=2*rand(1,N)-1; %产生随机噪声nt%=设计高通滤波器hn,用于滤除噪声nt中的低频成分,生成高通噪声=fp=150; fs=200;Rp=0.1;As=70;% 滤波器指标fb=fp,fs;m=0,1; % 计算remezord函数所需参数f,m,devdev=10(-As/20),(10(Rp/20)-1)/(10(Rp/20)+1);n,fo,mo,W=remezord(fb,m,dev,Fs);% 确定remez函数所需参数hn=remez(n,fo,mo,W); % 调用remez函数进行设计,用于滤除噪声nt中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt%=xt=xt+yt; %噪声加信号fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(3,1,1);plot(t,xt);grid;xlabel(t/s);ylabel(x(t);axis(0,Tp/5,min(xt),max(xt);title(a) 信号加噪声波形)subplot(3,1,2);plot(f,abs(fst)/max(abs(fst);grid;title(b) 信号加噪声的频谱)axis(0,Fs/2,0,1.2);xlabel(f/Hz);ylabel(幅度)10.5.2 滤波器参数及实验程序清单1、滤波器参数选取根据10.5.1 节实验指导的提示选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz。代入采样频率Fs=1000Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。所以选取blackman窗函数。与信号产生函数xtg相同,采样频率Fs=1000Hz。按照图10.5.2 所示的程序框图编写的实验程序为exp5.m。2、实验程序清单%数字信号处理(第三版)学习指导第10章实验5程序exp5.m% FIR数字滤波器设计及软件实现clear all;close all;%=调用xtg产生信号xt, xt长度N=1000,并显示xt及其频谱,=N=1000;xt=xtg(N);fp=120; fs=150;Rp=0.2;As=60;Fs=1000; % 输入给定指标% (1) 用窗函数法设计滤波器wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)B=2*pi*(fs-fp)/Fs; %过渡带宽度指标Nb=ceil(11*pi/B); %blackman窗的长度Nhn=fir1(Nb-1,wc,blackman(Nb);Hw=abs(fft(hn,1024);% 求设计的滤波器频率特性ywt=fftfilt(hn,xt,N); %调用函数fftfilt对xt滤波%以下为用窗函数法设计法的绘图部分(滤波器损耗函数,滤波器输出信号波形)%省略% (2) 用等波纹最佳逼近法设计滤波器fb=fp,fs;m=1,0; % 确定remezord函数所需参数f,m,devdev=(10(Rp/20)-1)/(10(Rp/20)+1),10(-As/20);Ne,fo,mo,W=remezord(fb,m,dev,Fs);% 确定remez函数所需参数hn=remez(Ne,fo,mo,W);% 调用remez函数进行设计Hw=abs(fft(hn,1024);% 求设计的滤波器频率特性yet=fftfilt(hn,xt,N); % 调用函数fftfilt对xt滤波%以下为用等波纹设计法的绘图部分(滤波器损耗函数,滤波器输出信号yw(nT)波形)%省略10.5.3 实验程序运行结果用窗函数法设计滤波器,滤波器长度 Nb=184。滤波器损耗函数和滤波器输出yw(nT)分别如图10.5.3(a)和(b)所示。用等波纹最佳逼近法设计滤波器,滤波器长度 Ne=83。滤波器损耗函数和滤波器输出ye(nT)分别如图10.5.3(c)和(d)所示。两种方法设计的滤波器都能有效地从噪声中提取信号,但等波纹最佳逼近法设计的滤波器阶数低得多,当然滤波实现的运算量以及时延也小得多,从图10.5.3(b)和(d)可以直观地看出时延差别。图10.5.310.5.4 简答思考题(1) 用窗函数法设计线性相位低通滤波器的设计步骤教材中有详细的介绍.(2) 希望逼近的理想带通滤波器的截止频率分别为:(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费; 几种常用的典型窗函数的通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。所以设计的滤波器的通带最大衰减和阻带最小衰减通常都存在较大富裕。如本实验所选的blackman窗函数,其阻带最小衰减为74dB,而指标仅为60dB。 用等波纹最佳逼近法设计的滤波器,其通带和阻带均为等波纹特性,且通带最大衰减和阻带最小衰减可以分别控制,所以其指标均匀分布,没有资源浪费,所以期阶数低得多。 实验六 数字信号处理在双音多频拨号系统中的应用%数字信号处理(第三版)第十章 实验6程序:exp6.m% DTMF双频拨号信号的生成和检测程序%clear all;clc;tm=1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68; % DTMF信号代表的16个数N=205;K=18,20,22,24,31,34,38,42;f1=697,770,852,941; % 行频率向量f2=1209,1336,1477,1633; % 列频率向量TN=input(键入6位电话号码= ); % 输入6位数字TNr=0; %接收端电话号码初值为零for l=1:6; d=fix(TN/10(6-l); TN=TN-d*10(6-l); for p=1:4; for q=1:4; if tm(p,q)=abs(d); break,end % 检测码相符的列号q end if tm(p,q)=abs(d); break,end % 检测码相符的行号p end n=0:1023; % 为了发声,加长序列 x = sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000);% 构成双频信号 sound(x,8000); % 发出声音 pause(0.1) % 接收检测端的程序 X=goertzel(x(1:205),K+1); % 用Goertzel算法计算八点DFT样本 val = abs(X); % 列出八点DFT向量 subplot(3,2,l); stem(K,val,.);grid;xlabel(k);ylabel(|X(k)|) % 画出DFT(k)幅度 axis(10 50 0 120) limit = 80; % for s=5:8; if val(s) limit, break, end % 查找列号 end for r=1:4; if val(r) limit, break, end % 查找行号 end TNr=TNr+tm(r,s-4)*10(6-l);enddisp(接收端检测到的号码为:) % 显示接收到的字符disp(TNr)运行程序,根据提示键入6位电话号码123456,回车后可以听见6位电话号码对应的DTMF信号的声音,并输出相应的6幅频谱图如图10.10.1所示,左上角的第一个图在k=18和k=31两点出现峰值,所以对应第一位号码数字1。最后显示检测到的电话号码123456。 图10.6.1 6位电话号码123456的DTMF信号在8个近似基频点的DFT幅度(1) 实验内容 运行仿真程序exp6.m,任意送入6位电话号码,打印出相应的幅度谱。观察程序运行结果,对照表10.10.1和表10.10.2,判断程序谱分析的正确性。 分析该仿真程序,将产生、检测和识别6位电话号码的程序改为能产生、检测和识别8位电话号码的程序,并运行一次,打印出相应的幅度谱和8位电话号码。 5. 实验报告(1) 分析程序exp8.m,画出仿真程序流程图。(2) 打印6位和8位电话号码DTMF信号的幅度谱。(3) 简述DTMF信号的参数:采样频率、DFT的变换点数以及观测时间的确定原则。10.6.2 实验程序清单及运行结果 1、实验内容 6位电话号码的DTMF双频拨号信号的生成和检测程序清单exp6.m已经在实验指导中给出。运行程序,并输入6位电话号码123456,则输出相应的6幅频谱图如图10.10.1所示,左上角的第一个图在k=18和k=31两点出现峰值,所以对应第一位号码数字1。其他5个图请读者对照表10.10.1和表10.10.2,确定确定其对应的数字,验证程序输出的电话号码“123456”是正确的。 2、实验内容 只要对6位电话号码检测程序exp6.m作如下修改,即可产生、检测和识别8位电话号码。(1)将第8行改为TN=input(键入8位电话号码= );(2)将第1012行改为for l=1:8; d=fix(TN/10(8-l); TN=TN-d*10(8-l); (3)将第26行改为 subplot(4,2,l);(4)将第36行改为TNr=TNr+tm(r,s-4)*10(8-l);修改后的程序为exp6_8.m,程序清单见程序集。运行程序exp6_8.m,输入输入8位电话号码87654321,则输出相应的8幅频谱图如图10.10.2所示。最后显示检测到的电话号码87654321。图10.6.1 8位电话号码87654321的DTMF信号在8个近似基频点的DFT幅度
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!