【高考前三个月复习数学理科函数与导数】专题3 第14练

上传人:工*** 文档编号:11144204 上传时间:2020-04-19 格式:DOC 页数:13 大小:81.46KB
返回 下载 相关 举报
【高考前三个月复习数学理科函数与导数】专题3 第14练_第1页
第1页 / 共13页
【高考前三个月复习数学理科函数与导数】专题3 第14练_第2页
第2页 / 共13页
【高考前三个月复习数学理科函数与导数】专题3 第14练_第3页
第3页 / 共13页
点击查看更多>>
资源描述
第14练函数的极值与最值题型分析高考展望本部分内容为导数在研究函数中的一个重要应用,在高考中也是重点考查的内容,多在解答题中的某一问中考查,要求熟练掌握函数极值与极值点的概念及判断方法,极值和最值的关系.常考题型精析题型一利用导数求函数的极值例1(2014江西)已知函数f(x)(x2bxb)(bR).(1)当b4时,求f(x)的极值;(2)若f(x)在区间(0,)上单调递增,求b的取值范围.点评(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内一定不是单调函数,即在某区间上的单调函数没有极值.变式训练1(2015安徽)已知函数f(x)(a0,r0).(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若400,求f(x)在(0,)内的极值.题型二利用导数求函数最值例2已知函数f(x)x3ax2bxc,曲线yf(x)在点x1处的切线为l:3xy10,若x时,yf(x)有极值.(1)求a,b,c的值;(2)求yf(x)在3,1上的最大值和最小值.点评(1)求解函数的最值时,要先求函数yf(x)在a,b内所有使f(x)0的点,再计算函数yf(x)在区间内所有使f(x)0的点和区间端点处的函数值,最后比较即得.(2)可以利用列表法研究函数在一个区间上的变化情况.变式训练2(2015安徽)设函数f(x)x2axb.(1)讨论函数f(sin x)在内的单调性并判断有无极值,有极值时求出极值;(2)记f0(x)x2a0xb0,求函数|f(sin x)f0(sin x)|在上的最大值D;(3)在(2)中,取a0b00,求zb满足D1时的最大值.高考题型精练1.(2015深圳模拟)设aR,若函数yexax,xR有大于零的极值点,则()A.a1C.a D.a2.已知函数yx33xc的图象与x轴恰有两个公共点,则c等于()A.2或2 B.9或3C.1或1 D.3或13.已知e为自然对数的底数,设函数f(x)(ex1)(x1)k(k1,2),则()A.当k1时,f(x)在x1处取到极小值B.当k1时,f(x)在x1处取到极大值C.当k2时,f(x)在x1处取到极小值D.当k2时,f(x)在x1处取到极大值4.(2015烟台模拟)若函数f(x)有且只有两个不同的零点,则实数k的取值范围是()A.(4,0) B.(,0C.(4,0 D.(,0)5.已知a为常数,函数f(x)x(ln xax)有两个极值点x1,x2(x10,f(x2)B.f(x1)0,f(x2)0,f(x2)D.f(x1)6.已知函数f(x)x32bx2cx1有两个极值点x1,x2,且x12,1,x21,2,则f(1)的取值范围是()A.,3 B.,6C.3,12 D.,127.函数f(x)x33axa在(0,1)内有最小值,则a的取值范围是_.8.已知函数f(x)x33ax23(a2)x1既有极大值又有极小值,则a的取值范围是_.9.若函数f(x)(1x2)(x2axb)的图象关于直线x2对称,则f(x)的最大值是_.10.已知函数f(x)ln x,求函数f(x)的极值和单调区间.11.(2014安徽 )设函数f(x)1(1a)xx2x3,其中a0.(1)讨论f(x)在其定义域上的单调性;(2)当x0,1时,求f(x)取得最大值和最小值时的x的值.12.(2015课标全国)设函数f(x)emxx2mx.(1)证明:f(x)在(,0)单调递减,在(0,)单调递增;(2)若对于任意x1,x21,1,都有|f(x1)f(x2)|e1,求m的取值范围.答案精析第14练函数的极值与最值常考题型精析例1解(1)函数f(x)的定义域为(,).当b4时,f(x),由f(x)0得x2或x0.当x(,2)时,f(x)0,f(x)单调递增;当x(0,)时,f(x)0,f(x)单调递减,故f(x)当x2时取得极小值f(2)0,在当x0时取得极大值f(0)4.(2)f(x),因为当x(0,)时,0,依题意当x(0,)时,有5x(3b2)0,从而(3b2)0.所以b的取值范围为(,.变式训练1解(1)由题意知xr,所求的定义域为(,r)(r,).f(x),f(x).所以当xr时,f(x)0,当rx0.因此,f(x)的单调递减区间为(,r),(r,);f(x)的单调递增区间为(r,r).(2)由(1)可知f(r)0,f(x)在(0,r)上单调递增,在(r,)上单调递减.因此,xr是f(x)的极大值点,所以f(x)在(0,)内的极大值为f(r)100,无极小值.例2解(1)由f(x)x3ax2bxc,得f(x)3x22axb.当x1时,切线l的斜率为3,可得2ab0. 当x时,yf(x)有极值,则f0,可得4a3b40.由,解得a2,b4.由于切点的横坐标为x1,所以f(1)4.所以1abc4,所以c5.(2)由(1),可得f(x)x32x24x5,所以f(x)3x24x4.令f(x)0,解得x12,x2.当x变化时,f(x),f(x)的取值及变化情况如下表所示:x3(3,2)2(2,)(,1) 1f(x)00f(x)8134所以yf(x)在3,1上的最大值为13,最小值为.变式训练2解(1)f(sin x)sin2 xasin xbsin x(sin xa)b,x.f(sin x)(2sin xa)cos x,x.因为x0,22sin x2.a2,bR时,函数f(sin x)单调递增,无极值.a2,bR时,函数f(sin x)单调递减,无极值.对于2a2,在内存在唯一的x0,使得2sin x0a.xx0时,函数f(sin x)单调递减;x0x时,函数f(sin x)单调递增;因此,2a2,bR时,函数f(sin x)在x0处有极小值f(sin x0)fb.(2)x时,|f(sin x)f0(sin x)|(a0a)sin xbb0|aa0|bb0|.当(a0a)(bb0)0时,取x,等号成立.当(a0a)(bb0)0时,ex1,aex1.2.A y3x23,当y0时,x1.则x变化时,y,y的变化情况如下表:x(,1)1(1,1)1(1,)y00yc2c2因此,当函数图象与x轴恰有两个公共点时,必有c20或c20,c2或c2.3.C 当k1时,f(x)exx1,f(1)0.x1不是f(x)的极值点.当k2时,f(x)(x1)(xexex2),显然f(1)0,且x在1的左边附近f(x)0,f(x)在x1处取到极小值.故选C.4.B 据题意当x0时,ln x0,解得x1,当x0时,kx2,此时x0必为函数零点,故若函数有两个零点,当且仅当x0),令f(x)0得2a,设(x),知(x),(x)草图如图,f(x)的两个极值点0x11,且2a(0,1),a.由f(x)草图可知f(x)在区间(0,x1)上单调递减,在(x1,x2)上单调递增.又f(0)0,f(1)a,f(x2)f(1)且a.f(x1).6.C 方法一由于f(x)3x24bxc,据题意方程3x24bxc0有两个根x1,x2,且x12,1,x21,2,令g(x)3x24bxc,结合二次函数图象可得只需此即为关于点(b,c)的线性约束条件,作出其对应平面区域,f(1)2bc,问题转化为在上述线性约束条件下确定目标函数f(1)2bc的最值问题,由线性规划易知3f(1)12,故选C.方法二方程3x24bxc0有两个根x1,x2,且x12,1,x21,2的条件也可以通过二分法处理,即只需g(2)g(1)0,g(2)g(1)0即可,利用同样的方法也可解答.7.0a1解析f(x)3x23a,令f(x)0,可得ax2.又x(0,1),0a2或a0,解得a2或a1.9.16解析依题意,f(x2)为偶函数,f(x2)(x24x3)x2(a4)x42ab,其中x3的系数为8a0,故a8,x的系数为284b11a0,故b15,令f(x)0,得x36x27x20,由对称轴为x2可知,将该式分解为(x2)(x24x1)0,可知其在2和2处取到最大值,最大值为16.10.解因为f(x),令f(x)0,得x1,又f(x)的定义域为(0,),f(x),f(x)随x的变化情况如下表:x(0,1)1(1,)f(x)0f(x)极小值所以x1时,f(x)的极小值为1.f(x)的单调递增区间为(1,),单调递减区间为(0,1).11.解(1)f(x)的定义域为(,),f(x)1a2x3x2.令f(x)0,得x1,x2,x1x2,所以f(x)3(xx1)(xx2).当xx2时,f(x)0;当x1x0.故f(x)在(,)和(,)内单调递减,在(,)内单调递增.(2)因为a0,所以x10.当a4时,x21,由(1)知,f(x)在0,1上单调递增,所以f(x)在x0和x1处分别取得最小值和最大值;当0a4时,x21,由(1)知,f(x)在0,x2上单调递增,在x2,1上单调递减,所以f(x)在xx2处取得最大值.又f(0)1,f(1)a,所以当0a1时,f(x)在x1处取得最小值;当a1时,f(x)在x0处和x1处同时取得最小值;当1a4时,f(x)在x0处取得最小值.12.(1)证明f(x)m(emx1)2x.若m0,则当x(,0)时,emx10,f(x)0;当x(0,)时,emx10,f(x)0.若m0,则当x(,0)时,emx10,f(x)0;当x(0,)时,emx10,f(x)0.所以,f(x)在(,0)单调递减,在(0,)上单调递增.(2)解由(1)知,对任意的m,f(x)在1,0上单调递减,在0,1上单调递增,故f(x)在x0处取得最小值.所以对于任意x1,x21,1,|f(x1)f(x2)|e1的充要条件是即设函数g(t)ette1,则g(t)et1.当t0时,g(t)0;当t0时,g(t)0.故g(t)在(,0)上单调递减,在(0,)单调递增.又g(1)0,g(1)e12e0,故当t1,1时,g(t)0.当m1,1时,g(m)0,g(m)0,即式成立;当m1时,由g(t)的单调性,g(m)0,即emme1;当m1时,g(m)0,即emme1.综上,m的取值范围是1,1.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!