九平面一般力系平衡方程地其他形式

上传人:痛*** 文档编号:98582253 上传时间:2022-05-30 格式:DOC 页数:12 大小:1.08MB
返回 下载 相关 举报
九平面一般力系平衡方程地其他形式_第1页
第1页 / 共12页
九平面一般力系平衡方程地其他形式_第2页
第2页 / 共12页
九平面一般力系平衡方程地其他形式_第3页
第3页 / 共12页
点击查看更多>>
资源描述
word第九讲容一、平面一般力系平衡方程的其他形式前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的根本形式,除了这种形式外,还可将平衡方程表示为二力矩形式与三力矩形式。1二力矩形式的平衡方程在力系作用面任取两点A、B与X轴,如图413所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 (46)式中X轴不与A、B两点的连线垂直。证明:首先将平面一般力系向A点简化,一般可得到过A点的一个力和一个力偶。假如成立,如此力系只能简化为通过A点的合力R或成平衡状态。如果又成立,说明R必通过B。可见合力R的作用线必为AB连线。又因成立,如此,即合力R在X轴上的投影为零,因AB连线不垂直X轴,合力R亦不垂直于X轴,由可推得。可见满足方程46的平面一般力系,假如将其向A点简化,其主矩和主矢都等于零,从而力系必为平衡力系。2三力矩形式的平衡方程在力系作用面任意取三个不在一直线上的点A、B、C,如图414所示,如此力系的平衡方程可写为三个力矩方程形式,即 47式中,A、B、C三点不在同一直线上。同上面讨论一样,假如和成立,如此力系合成结果只能是通过A、B两点的一个力图414或者平衡。如果也成立,如此合力必然通过C点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,才能成立。因此,力系必然是平衡力系。综上所述,平面一般力系共有三种不同形式的平衡方程,即式45、式46、式47,在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。【例47】 某屋架如图415a所示,设左屋架与盖瓦共重,右屋架受到风力与荷载作用,其合力,与BC夹角为,试求A、B支座的反力。【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X轴和Y轴,如图415b所示,列出三个平衡方程校核说明计算无误。【例48】 梁AC用三根支座链杆连接,受一力作用,如图416a所示。不计梁与链杆的自重,试求每根支座链杆的反力。【解】 取AC梁为研究对象,画其受力图,如图416b所示。列平衡方程时,为防止解联立方程组,最好所列的方程中只有一个未知力,因此,取和的交点O为矩心列平衡方程取与的交点O2为矩心列平衡方程取校核说明计算无误。3平面力系的特殊情况平面一般力系是平面力系的一般情况。除前面讲的平面汇交力系,平面力偶系外,还有平面平行力系都可以看为平面一般力系的特殊情况,它们的平衡方程都可以从平面一般力系的平衡方程得到,现讨论如下。1平面汇交力系对于平面汇交力系,可取力系的汇交点作为坐标的原点,图417(a)所示,因各力的作用线均通过坐标原点O,各力对O点的矩必为零,即恒有。因此,只剩下两个投影方程即为平面汇交力系的平衡方程。2平面力偶系平面力偶系如图417(b)所示,因构成力偶的两个力在任何轴上的投影必为零,如此恒有和,只剩下第三个力矩方程,但因为力偶对某点的矩等于力偶矩,如此力矩方程可改写为即平面力偶系的平衡方程。3平面平行力系平面平行力系是指其各力作用线在同一平面上并相互平行的力系,如图417所示,选OY轴与力系中的各力平行,如此各力在X轴上的投影恒为零,如此平衡方程只剩下两个独立的方程48假如采用二力矩式46,可得49式中A、B两点的连线不与各力作用线平行。平面平行力系只有两个独立的平衡方程,只能求解两个未知量。【例49】 图418所示为塔式起重机。轨距,机身重,其作用线到右轨的距离,起重机平衡重,其作用线到左轨的距离,荷载P的作用线到右轨的距离,1试证明空载时时起重机时否会向左倾倒?2求出起重机不向右倾倒的最大荷载P。【解】 以起重机为研究对象,作用于起重机上的力有主动力G、P、Q与约束力和,它们组成一个平行力系图418。(1) 使起重机不向左倒的条件是,当空载时,取,列平衡方程所以起重机不会向左倾倒(2) 使起重机不向右倾倒的条件是,列平衡方程欲使,如此需当荷载时,起重机是稳定的。二、物体系统的平衡前面研究了平面力系单个物体的平衡问题。但是在工程结构中往往是由假如干个物体通过一定的约束来组成一个系统。这种系统称为物体系统。例如,图示419a所示的组合梁,就是由梁AC和梁CD通过铰C连接,并支承在A、B、D支座而组成的一个物体系统。在一个物体系统中,一个物体的受力与其他物体是严密相关的;整体受力又与局部严密相关的。物体系统的平衡是指组成系统的每一个物体与系统的整体都处于平衡状态。在研究物体系统的平衡问题时,不仅要知道外界物体对这个系统的作用力,同时还应分析系统部物体之间的相互作用力。通常将系统以外的物体对这个系统的作用力称为外力,系统各物体之间的相互作用力称为力。例如图419b的组合梁的受力图,荷载与A、B、D支座的反力就是外力,而在铰C处左右两段梁之间的互相作用的力就是力。应当注意,外力和力是相对的概念,是对一定的考察对象而言的,例如图419组合梁在铰C处两段梁的相互作用力,对组合梁的整体来说,就是力,而对左段梁或右段梁来说,就成为外力了。当物体系统平衡时,组成该系统的每个物体都处于平衡状态,因而,对于每一个物体一般可写出三个独立的平衡方程。如果该物体系统有个物体,而每个物体又都在平面一般力系作用下,如此就有个独立的平衡方程,可以求出个未知量。但是,如果系统中的物体受平面汇交力系或平面平行力系的作用,如此独立的平衡方程将相应减少,而所能求的未知量数目也相应减少。当整个系统中未知量的数目不超过独立的平衡方程数目,如此未知量可由平衡方程全部求出,这样的问题称为静定问题。当未知量的数目超过了独立平衡方程数目,如此未知量由平衡方程就不能全部求出,这样的问题,如此称为超静定问题,在静力学中,我们不考虑超静定问题。在解答物体系统的平衡问题时,可以选取整个物体系统作为研究对象,也可以选取物体系统中某局部物体一个物体或几个物体组合作为研究对象,以建立平衡方程。由于物体系统的未知量较多,应尽量防止从总体的联立方程组中解出,通常可选取整个系统为研究对象,看能否从中解出一或两个未知量,然后再分析每个物体的受力情况,判断选取哪个物体为研究对象,使之建立的平衡方程中包含的未知量少,以简化计算。下面举例说明求解物体系统平衡问题的方法。【例410】 组合梁受荷载如图420(a)所示。,梁自重不计,求支座A、C的反力。【解】 组合梁由两段梁AB和BC组成,作用于每一个物体的力系都是平面一般力系,共有6个独立的平衡方程;而约束力的未知数也是6A处有三个,B处有两个,C处有1个。首先取整个梁为研究对象,受力图如图420b所示。其余三个未知数、和,无论怎样选取投影轴和矩心,都无法求出其中任何一个,因此,必须将AB梁和BC梁分开考虑,现取BC梁为研究对象,受力图如图420c所示。再回到受图420b校核:对整个组合梁,列出可见计算无误。【例411】 钢筋混凝土三铰刚架受荷载如图421a所示,求支座A、B和铰C的约束反力。【解】 三铰刚架由左右两半刚架组成,受到平面一般力系的作用,可以列出六个独立的平衡方程。分析整个三铰刚架和左、右两半刚架的受力,画出受力图,如图b、c、d所示,可见,系统的未知量总计为六个,可用六个平衡方程求解出六个未知量。1取整个三铰刚架为研究对象,受力图如图421b所示2取左半刚架为研究对象,受力图如图421c所示将值代入a,可得校核:考虑右半刚架的平衡,受力图如图421d所示可见计算无误。【412】 图422a所示,在支架上悬挂着重的重物,B、E、D为铰接,A为固定端支座,滑轮直径为300mm,轴承C是光滑的,其余尺寸如图示。各杆和滑轮、绳子重量不计,求A、B、C、D、E各处的反力。【解】:本结构中,DE为二力杆,因此D、E处铰链反力有1个未知量;A为固定端支座有3个未知的约束反力;B、C处铰链反力各有2个未知量;滑轮两边的绳子拉力各有1个未知量;共10个未知量。考虑到AB、BC和滑轮三个构件处于平衡,其可写9个平衡方程;再加上重物在二力作用下处于平衡,可有1个平衡方程。平衡方程的数目恰好等于未知量的数目。取整个结构为研究对象,图422b列平衡方程考虑重物的平衡图422e根据二力平衡公理知考虑滑轮的平衡图422d,列平衡方程可见,在不计轴承摩擦的情况下,滑轮处于平衡时,其两边绳子的拉力相等。再考虑BC杆的平衡图422c,列平衡方程校核:取BC杆平衡图422c,由于可见计算无误。12 / 12
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!