植物的营养生长课件

上传人:阳*** 文档编号:82398181 上传时间:2022-04-29 格式:PPT 页数:76 大小:1.97MB
返回 下载 相关 举报
植物的营养生长课件_第1页
第1页 / 共76页
植物的营养生长课件_第2页
第2页 / 共76页
植物的营养生长课件_第3页
第3页 / 共76页
点击查看更多>>
资源描述
植植 物物 生生 理理 学学第六章第六章第六章第六章 植物的营养生长植物的营养生长 高等植物的营养生长始于种子萌发,经由苗期、高等植物的营养生长始于种子萌发,经由苗期、童期乃至开花结实等过程。童期乃至开花结实等过程。 由于细胞的分生及扩大引起植物体积与重量的由于细胞的分生及扩大引起植物体积与重量的不不可逆增加可逆增加,植物由小变大,由胚最终变成完整植株,植物由小变大,由胚最终变成完整植株,这种量上的增加就是这种量上的增加就是生长生长。 细胞的分化引起处于不同部位的细胞群发生质的细胞的分化引起处于不同部位的细胞群发生质的变化,形成执行各种不同功能的组织与器官,这种质变化,形成执行各种不同功能的组织与器官,这种质的转变就是的转变就是发育发育。 生长为发育奠定基础,发育是生长的必然结果。生长为发育奠定基础,发育是生长的必然结果。 第一节第一节 种子生理种子生理一、种子的休眠一、种子的休眠、种子休眠的概念、种子休眠的概念 一个具有生活力的种子,在适宜萌发的外界条件一个具有生活力的种子,在适宜萌发的外界条件下,由于种子的内部原因而不萌发,称为下,由于种子的内部原因而不萌发,称为种子休眠种子休眠 。 种子休眠是植物长期适应环境的一种能力。在生种子休眠是植物长期适应环境的一种能力。在生产上,种子休眠对于贮藏和保存种质资源是有利的,产上,种子休眠对于贮藏和保存种质资源是有利的,但往往给栽培管理或人工繁育带来不便,因而需要研但往往给栽培管理或人工繁育带来不便,因而需要研究种子休眠的原因和打破休眠的方法。究种子休眠的原因和打破休眠的方法。 、种子休眠的原因、种子休眠的原因1、种皮障碍、种皮障碍 由于蜡质层、角质层的存在,或种皮较厚、结构由于蜡质层、角质层的存在,或种皮较厚、结构致密等原因导致种子休眠,是一种致密等原因导致种子休眠,是一种被迫休眠被迫休眠。种皮从。种皮从三个方面迫使种子处于休眠状态:三个方面迫使种子处于休眠状态:不透水,不透水,不透不透气,气,机械阻碍限制胚的生长。机械阻碍限制胚的生长。 2、胚未完全发育、胚未完全发育 有些植物如银杏、人参、当归、冬青等的种子,有些植物如银杏、人参、当归、冬青等的种子,在脱离母体时胚尚未完成发育过程:体积很小,分化在脱离母体时胚尚未完成发育过程:体积很小,分化不完全,结构不完善。因此,只有经过一段休眠期,不完全,结构不完善。因此,只有经过一段休眠期,等幼胚发育完全后种子才能萌发。等幼胚发育完全后种子才能萌发。 3、种子未完成后熟、种子未完成后熟 有些植物如苹果、桃、梨等的种子,有些植物如苹果、桃、梨等的种子, 胚已经发育胚已经发育完全,但在适宜条件下也不能萌发,它们一定要经过完全,但在适宜条件下也不能萌发,它们一定要经过休眠,在胚内部发生某些生理生化变化后才能萌发,休眠,在胚内部发生某些生理生化变化后才能萌发,这称为这称为生理后熟生理后熟。其原因在于,种子内部的有机物质。其原因在于,种子内部的有机物质和植物激素尚未完成转化。和植物激素尚未完成转化。由胚未完全发育以及种子未完成后熟造成的休眠由胚未完全发育以及种子未完成后熟造成的休眠称为称为生理休眠生理休眠。 4、抑制物质的存在、抑制物质的存在 有些植物的果实或种皮内含有抑制萌发的物质,有些植物的果实或种皮内含有抑制萌发的物质,使种子处于休眠状态。使种子处于休眠状态。 天然存在的种子萌发抑制物质有:天然存在的种子萌发抑制物质有: 盐类盐类(如如NaCl、CaCl2等等),释放,释放NH3的含的含N物质,物质,有机酸,植物激素,生物碱,醛类等。有机酸,植物激素,生物碱,醛类等。 、种子休眠的破除、种子休眠的破除 1、机械破损、机械破损 对种皮不透水、不透气的种子可用沙子等磨破种对种皮不透水、不透气的种子可用沙子等磨破种皮,如豆科牧草种子可采用此法促进发芽。皮,如豆科牧草种子可采用此法促进发芽。 2、层积处理、层积处理 生理后熟型的种子可采用层积处理破除休眠。其生理后熟型的种子可采用层积处理破除休眠。其方法是:用湿砂将种子成层地堆积在低温下的室外背方法是:用湿砂将种子成层地堆积在低温下的室外背阴处或地窖内阴处或地窖内13个月。层积时的低温和时间与植物个月。层积时的低温和时间与植物种类有关。种类有关。 完成后熟作用时种皮透性增大,呼吸逐渐增强,完成后熟作用时种皮透性增大,呼吸逐渐增强,酶活性提高,有机物质转化加强,内源激素亦发生变酶活性提高,有机物质转化加强,内源激素亦发生变化。化。 3、药剂处理、药剂处理 某些化学药剂能够破除种子的休眠,如:某些化学药剂能够破除种子的休眠,如: 用酒精处理可增加莲子种皮的透性;用酒精处理可增加莲子种皮的透性; 热热H2SO4(120-150)搅拌棉花种子搅拌棉花种子5分钟,再用分钟,再用清水冲洗,可使种皮透水透气。清水冲洗,可使种皮透水透气。 用用0.5或或0.1硫脲于硫脲于20下浸泡桃、莴苣的种下浸泡桃、莴苣的种子子16小时,可打破休眠。小时,可打破休眠。 用用GA处理有效地促进人参、银杏种子萌发。处理有效地促进人参、银杏种子萌发。 用用H2O2能破除小型豆科植物的种子休眠。能破除小型豆科植物的种子休眠。 4、温热处理、温热处理 某些植物种子(如棉花、黄瓜、小麦等)经日晒某些植物种子(如棉花、黄瓜、小麦等)经日晒和用和用35-40温水处理,可促进萌发。温水处理,可促进萌发。 5、清水冲洗、清水冲洗 西瓜、甜瓜、番茄、辣椒和茄子等种子外壳上含西瓜、甜瓜、番茄、辣椒和茄子等种子外壳上含有萌发抑制剂,播前反复冲洗,可提高种子发芽率。有萌发抑制剂,播前反复冲洗,可提高种子发芽率。 6、物理因素处理、物理因素处理 利用利用X射线、超声波、高低频电流处理种子,亦射线、超声波、高低频电流处理种子,亦有破除休眠的作用。有破除休眠的作用。 二、种子的寿命二、种子的寿命 种子从完全成熟到丧失生活力种子从完全成熟到丧失生活力(或死亡或死亡)所经历的时所经历的时间称为种子的寿命。间称为种子的寿命。、种子寿命与植物种类的关系、种子寿命与植物种类的关系 植物种类不同,寿命差异很大。可分为:植物种类不同,寿命差异很大。可分为: 1、 短命种子短命种子 寿命几小时至几周。如柳属植物种子寿命为寿命几小时至几周。如柳属植物种子寿命为12h。 2、中命种子、中命种子 寿命几年至几十年。大多数栽培植物均在此范围。寿命几年至几十年。大多数栽培植物均在此范围。 3、长命种子、长命种子 寿命百年至千年。寿命百年至千年。北京植物园曾将辽东半岛普兰店附近北京植物园曾将辽东半岛普兰店附近古代泥炭层中发掘出的古莲子浸在浓硫酸中,再剥去种皮,使古代泥炭层中发掘出的古莲子浸在浓硫酸中,再剥去种皮,使水分慢慢进入胚内,然后播入土中,结果种子生根发芽,开出水分慢慢进入胚内,然后播入土中,结果种子生根发芽,开出了鲜艳的花朵。了鲜艳的花朵。 经经14C测定,古莲子绝对年龄寿命测定,古莲子绝对年龄寿命1041年。年。、种子寿命与贮藏条件的关系、种子寿命与贮藏条件的关系 种子寿命不仅与其遗传特性有关,而且受贮藏条种子寿命不仅与其遗传特性有关,而且受贮藏条件件(温度、水分、氧气、仓虫和微生物温度、水分、氧气、仓虫和微生物)的影响。的影响。 一般,种子宜贮藏于低温、干燥的环境之中。一般,种子宜贮藏于低温、干燥的环境之中。三、种子的萌发三、种子的萌发、种子萌发的外界条件、种子萌发的外界条件 充足的水分、适宜的温度、足够的氧气,有些种充足的水分、适宜的温度、足够的氧气,有些种子还需光暗条件。子还需光暗条件。 1、水分、水分 种子只有吸收一定量的水分才能萌发。原因是:种子只有吸收一定量的水分才能萌发。原因是: 使种皮变软,既利于气体交换,提高呼吸速率,使种皮变软,既利于气体交换,提高呼吸速率,又便于种胚突破种皮,继续生长;又便于种胚突破种皮,继续生长; 促使原生质胶体由凝胶促使原生质胶体由凝胶溶胶,酶活性提高,溶胶,酶活性提高,代谢加强;代谢加强; 促进不溶性的大分子化合物促进不溶性的大分子化合物可溶性的小分子可溶性的小分子化合物,供胚呼吸;化合物,供胚呼吸; 胚细胞的分裂与伸长均离不开水;胚细胞的分裂与伸长均离不开水; 使激素由结合型使激素由结合型自由型,调节胚的生长。自由型,调节胚的生长。2、温度、温度 种子萌发有温度三基点:最低、最适和最高温度,种子萌发有温度三基点:最低、最适和最高温度,但变温条件更有利于种子萌发,其原因是:但变温条件更有利于种子萌发,其原因是: 变温引起种皮胀缩,有利于吸水和气体交换,变温引起种皮胀缩,有利于吸水和气体交换,提高种子呼吸速率;提高种子呼吸速率; 变温有利于胚突破种皮;变温有利于胚突破种皮; 变温适于各种酶的温度要求,促进贮藏物质的变温适于各种酶的温度要求,促进贮藏物质的转化与运输。转化与运输。3、氧气、氧气 O2为种子萌发必不可少的条件,如果种子萌发期为种子萌发必不可少的条件,如果种子萌发期间供间供O2不足则导致无氧呼吸,一方面贮藏物质消耗过不足则导致无氧呼吸,一方面贮藏物质消耗过多过快,另一方面产生酒精引起中毒。多过快,另一方面产生酒精引起中毒。 一般,空气含氧量高于一般,空气含氧量高于10%种子才能正常萌发,种子才能正常萌发,低于低于5%多数种子不能萌发。多数种子不能萌发。 4、光、光 光对种子萌发的影响可分为三种类型:光对种子萌发的影响可分为三种类型: 中性种子中性种子:萌发时对光无严格要求,光下或暗:萌发时对光无严格要求,光下或暗中均能萌发,大多数植物种子属于此类。中均能萌发,大多数植物种子属于此类。 需光种子需光种子:萌发时需要光,如烟草、莴苣、胡:萌发时需要光,如烟草、莴苣、胡萝卜、桑等的种子,又称喜光种子;萝卜、桑等的种子,又称喜光种子; 嫌光种子嫌光种子:萌发时见光受抑制,如西瓜、甜瓜、:萌发时见光受抑制,如西瓜、甜瓜、番茄、洋葱、茄子等的种子,又称喜暗种子。番茄、洋葱、茄子等的种子,又称喜暗种子。、种子萌发的生理生化变化、种子萌发的生理生化变化 1、吸水过程的变化、吸水过程的变化 分为三个阶段:分为三个阶段: 急剧吸水阶段急剧吸水阶段() 吸胀性吸水吸胀性吸水 滞缓吸水阶段滞缓吸水阶段() 胚根突破种皮胚根突破种皮 重新迅速吸水阶段重新迅速吸水阶段() 渗透性吸水渗透性吸水 休眠种子则无吸水的第三阶段。休眠种子则无吸水的第三阶段。 2、呼吸速率的变化、呼吸速率的变化 呼吸速率的变化与吸水的变化极为相似,也呈现呼吸速率的变化与吸水的变化极为相似,也呈现出急剧上升、滞缓和再急剧上升三个阶段。出急剧上升、滞缓和再急剧上升三个阶段。 3、贮藏物质的变化、贮藏物质的变化 萌发过程中,种子的贮藏物质萌发过程中,种子的贮藏物质(淀粉、脂肪和蛋白淀粉、脂肪和蛋白质质)在相应的酶类催化下发生一系列的变化;大分子在相应的酶类催化下发生一系列的变化;大分子小分子;不溶性小分子;不溶性可溶性;贮藏部位可溶性;贮藏部位(胚乳子叶胚乳子叶)胚体,胚体,作为物质和能量的来源。作为物质和能量的来源。 见下图见下图 4、激素的变化、激素的变化 种子萌发时,种子萌发时,IAA、GA、CTK含量上升,含量上升, ABA等抑制剂含量下降。等抑制剂含量下降。 如如:未萌发的种子通常不含自由型未萌发的种子通常不含自由型IAA,但萌发初,但萌发初期种子内束缚型的期种子内束缚型的IAA即转变为自由型的即转变为自由型的IAA。 继续继续返回返回、种子萌发的过程、种子萌发的过程 1、吸胀、吸胀 种子吸水膨胀是萌发过程的开始。吸胀的结果导种子吸水膨胀是萌发过程的开始。吸胀的结果导致种皮变软、贮藏物质转化、代谢活跃,出现胚细胞致种皮变软、贮藏物质转化、代谢活跃,出现胚细胞的分生和扩大。的分生和扩大。 2、萌动、萌动 随着胚的长大,胚根突破种皮随着胚的长大,胚根突破种皮(露白或破胸露白或破胸),这,这是萌动的标志。是萌动的标志。 3、发芽、发芽 当胚根的长度等于种子长度或者胚芽突破种皮并当胚根的长度等于种子长度或者胚芽突破种皮并达到种子长度一半时即为发芽。以后逐渐长成幼苗。达到种子长度一半时即为发芽。以后逐渐长成幼苗。 第二节第二节 植物生长的细胞学基础植物生长的细胞学基础 植物的生长是以细胞的生长为基础的。细胞的植物的生长是以细胞的生长为基础的。细胞的生生长长包括包括细胞分裂细胞分裂(数目增加)和(数目增加)和伸长伸长(体积增加)两(体积增加)两个方面。由于细胞的个方面。由于细胞的生长生长与与分化分化,幼苗迅速长大,各,幼苗迅速长大,各种器官不断产生,最后成长为大而功能完善的植株。种器官不断产生,最后成长为大而功能完善的植株。一、细胞的分裂一、细胞的分裂 (生长慢)(生长慢) 通常,把经分裂形成的细胞至下次再分裂成两个通常,把经分裂形成的细胞至下次再分裂成两个子细胞所经历的时间称为子细胞所经历的时间称为细胞周期细胞周期 。高等植物的细胞。高等植物的细胞周期随物种而异,为周期随物种而异,为1030小时。小时。 细胞周期可分为四个时期:细胞周期可分为四个时期: G1期:从上一次有丝分裂结束到期:从上一次有丝分裂结束到DNA合成之前,合成之前,是是DNA合成的准备时期。合成的准备时期。 S期:期:DNA与组蛋白合成时期,与组蛋白合成时期,DNA的含量增加的含量增加一倍。一倍。 G2期:从期:从DNA合成结束到下一次有丝分裂开始,合成结束到下一次有丝分裂开始,是有丝分裂准备时期。是有丝分裂准备时期。 M期:有丝分裂开始到结束的时期。期:有丝分裂开始到结束的时期。二、细胞的伸长二、细胞的伸长(生长快)(生长快) 在分生组织中,除少数细胞仍保留分裂能力以外,在分生组织中,除少数细胞仍保留分裂能力以外,其余的大多数细胞则逐渐转入伸长阶段。在这一阶段,其余的大多数细胞则逐渐转入伸长阶段。在这一阶段,形态上的特点是细胞体积增大。形态上的特点是细胞体积增大。(出现小液泡(出现小液泡 合并成大液泡合并成大液泡 细胞质、细胞核被挤至细胞边缘)细胞质、细胞核被挤至细胞边缘) CTK促使细胞体积扩大;促使细胞体积扩大;IAA与与GA促进细胞伸促进细胞伸长,长,ABA与与ETH则抑制细胞的伸长。则抑制细胞的伸长。 三、细胞的分化三、细胞的分化(生长慢)(生长慢) 细胞的细胞的分化分化是指由分生组织的细胞发育成结构与是指由分生组织的细胞发育成结构与功能不同的组织细胞的过程。功能不同的组织细胞的过程。 由分生组织的细胞可分化成薄壁组织、输导组织、由分生组织的细胞可分化成薄壁组织、输导组织、机械组织、保护组织和分泌组织,进而形成各种器官。机械组织、保护组织和分泌组织,进而形成各种器官。 综上所述,细胞的综上所述,细胞的分裂分裂、伸长伸长与与分化分化三个时期没三个时期没有明显的严格界限,常相互重叠。但是,在自然条件有明显的严格界限,常相互重叠。但是,在自然条件下,细胞的三个时期不可逆转。细胞的生长表现出了下,细胞的三个时期不可逆转。细胞的生长表现出了“慢慢快快慢慢”的特征。的特征。四、组织培养四、组织培养 组织培养组织培养是指在无菌条件下将离体的植物是指在无菌条件下将离体的植物器官器官(如根、茎、叶等如根、茎、叶等)、组织组织(如形成层、胚乳、髓部等如形成层、胚乳、髓部等)、细胞细胞(如大孢子、小孢子、体细胞等如大孢子、小孢子、体细胞等),以及,以及原生质体原生质体和和花药花药,在人工培养基上培养,使其生长、分化并形,在人工培养基上培养,使其生长、分化并形成完整植株的技术。成完整植株的技术。 从植物体上分离下来的被培养的器官、组织、细从植物体上分离下来的被培养的器官、组织、细胞团等,叫做胞团等,叫做外植体外植体。、组织培养的理论依据、组织培养的理论依据 植物细胞具有全能性,即植物体的每一个细胞都植物细胞具有全能性,即植物体的每一个细胞都有分化成为一个完整植株的潜在能力。有分化成为一个完整植株的潜在能力。、组织培养的过程、组织培养的过程 1、配制培养基、配制培养基 通常由五类物质组成:通常由五类物质组成: 碳源碳源(1-4的蔗糖的蔗糖):还有维持渗透势的作用。:还有维持渗透势的作用。 无机营养:包括大量元素和微量元素。无机营养:包括大量元素和微量元素。 维生素:主要是维生素:主要是B1、B6、烟酸和肌醇;、烟酸和肌醇; 生长调节剂:生长调节剂:IAA类为类为 2,4-D或或NAA,CTK类类为为6-BA或或KT; 有机附加物:甘氨酸、水解蛋白、酵母等。有机附加物:甘氨酸、水解蛋白、酵母等。 培养基要有适宜的培养基要有适宜的pHpH值。如果是固体培养还需琼值。如果是固体培养还需琼脂作为支持物。脂作为支持物。 各种培养基配方如下表所示。各种培养基配方如下表所示。 2、培养基的高压灭菌和外植体的消毒、培养基的高压灭菌和外植体的消毒 3、接种与培养、接种与培养 分接种、植株诱导、生根、移栽等四个阶段。分接种、植株诱导、生根、移栽等四个阶段。 外植体外植体 细胞脱分化细胞脱分化 愈伤组织愈伤组织 再分化再分化 小植株小植株 新植株新植株 器官发生型器官发生型胚胎发生型胚胎发生型胚状体胚状体 移栽移栽 细胞脱分化:在人工培养基上外植体经过多次细细胞脱分化:在人工培养基上外植体经过多次细胞分裂而失去原来的分化状态,形成无结构的愈伤组胞分裂而失去原来的分化状态,形成无结构的愈伤组织或细胞团的过程。织或细胞团的过程。 再分化:愈伤组织或细胞团再度分化形成另一种再分化:愈伤组织或细胞团再度分化形成另一种或几种类型的细胞、组织、器官、直至最终形成完整或几种类型的细胞、组织、器官、直至最终形成完整植株的过程植株的过程 器官发生型:直接分化形成芽与根,从而获得小器官发生型:直接分化形成芽与根,从而获得小植株。植株。 胚胎发生型:即分化形成了一些类似胚胎结构的胚胎发生型:即分化形成了一些类似胚胎结构的细胞群即胚状体,胚状体的一端分化形成芽原基,另细胞群即胚状体,胚状体的一端分化形成芽原基,另一端分化形成根原基,从而获得小植株。一端分化形成根原基,从而获得小植株。 继续继续返回返回、组织培养的应用、组织培养的应用 1、培育作物新品种、培育作物新品种 如单倍体育种中小麦的如单倍体育种中小麦的“花培花培1号号”。 2、快速繁殖植物、快速繁殖植物 工厂化生产苗木、花卉。工厂化生产苗木、花卉。 1个芽个芽100万株万株(年年) 3、获得无病毒植株、获得无病毒植株 如马铃薯茎尖脱毒培养如马铃薯茎尖脱毒培养 无病毒种薯无病毒种薯 4、保存和运输种质资源、保存和运输种质资源 保存和运输作为种质资源的外植体,再通过组织保存和运输作为种质资源的外植体,再通过组织培养培养新植株。新植株。 5、配合基因工程的进行、配合基因工程的进行 第三节第三节 植物生长的基本特性植物生长的基本特性 植物生长有四大基本特性:植物生长有四大基本特性: 生长量上的生长量上的“慢慢快快慢慢”特性;特性; 时间上的周期性;时间上的周期性; 空间上的相关性;空间上的相关性; 生理上的异质性。生理上的异质性。 一、植物生长的一、植物生长的“慢慢快快慢慢”特性特性、生长量的表示法、生长量的表示法 1、生长积量、生长积量 指生长积累的数量,也就是测定时的实际数量,指生长积累的数量,也就是测定时的实际数量,可用长度,面积、体积、重量等来表示。可用长度,面积、体积、重量等来表示。 2、生长速率、生长速率 用以表示生长的快慢,有两种表示方法:用以表示生长的快慢,有两种表示方法: 绝对生长速率绝对生长速率(AGR):单位时间内植物材料生:单位时间内植物材料生长的绝对增加量。长的绝对增加量。 W2 - W1 t2 - t1 式中,式中, t1 、t2 最初、最终测定的时间最初、最终测定的时间 W1、W2 最初、最终测定的重量最初、最终测定的重量 相对生长速率相对生长速率(RGR): 单位时间内植物材料绝对增加量占原生长量的百单位时间内植物材料绝对增加量占原生长量的百分比。分比。 W2 - W1 W1RGR =AGR =、生长大周期和生长曲线、生长大周期和生长曲线 植物的细胞、组织、器官、乃至个体,在整个生植物的细胞、组织、器官、乃至个体,在整个生长进程中,生长速率均表现出长进程中,生长速率均表现出 “慢慢快快慢慢”的的规律规律。把生长的这三个阶段总和起来,叫做把生长的这三个阶段总和起来,叫做生长大周期生长大周期。 若以时间为横座标,以生长量为纵座标,就可以若以时间为横座标,以生长量为纵座标,就可以绘出一条曲线,叫做绘出一条曲线,叫做生长曲线。生长曲线。 生长量若以生长积量表示,则得生长量若以生长积量表示,则得S型曲线;若以绝型曲线;若以绝对生长速率表示,则得一抛物线。对生长速率表示,则得一抛物线。 认识生长大周期在认识生长大周期在农业生产上具有重要意农业生产上具有重要意义。一切促进或抑制生义。一切促进或抑制生长的措施(如灌溉、施长的措施(如灌溉、施肥,使用生长调节剂肥,使用生长调节剂等),只有在最快生长等),只有在最快生长速率到来之前应用才最速率到来之前应用才最有效,如果器官一旦建有效,如果器官一旦建成,生长大周期已经结成,生长大周期已经结束,再补救就来不及了。束,再补救就来不及了。二、植物生长的周期性二、植物生长的周期性 植物的生长速率随着昼夜和季节而发生有规律的植物的生长速率随着昼夜和季节而发生有规律的变化,叫做植物生长的周期性。变化,叫做植物生长的周期性。、生长速率的昼夜周期性、生长速率的昼夜周期性 地球自转引起昼夜交替,导致光、温、水发生昼地球自转引起昼夜交替,导致光、温、水发生昼夜周期性变化,因而使植物的生长速率呈现出昼夜的夜周期性变化,因而使植物的生长速率呈现出昼夜的周期性。周期性。这里,以温度的影响最为明显。有三种情况:这里,以温度的影响最为明显。有三种情况:在在盛夏,生长速率白天较慢(气温高、盛夏,生长速率白天较慢(气温高、蒸腾大、光照强、紫外线蒸腾大、光照强、紫外线多多),夜间较快。),夜间较快。在秋冬季,生长速率白天高于夜间(昼暖在秋冬季,生长速率白天高于夜间(昼暖夜寒)。夜寒)。昼夜温差不大则昼夜生长相似。昼夜温差不大则昼夜生长相似。、营养生长的季节周期性、营养生长的季节周期性 地球公转引起日照长度、光照、温度、雨量的季地球公转引起日照长度、光照、温度、雨量的季节性变化(温带尤为明显),使得温带的多年生植物节性变化(温带尤为明显),使得温带的多年生植物呈现出营养生长的季节周期性。呈现出营养生长的季节周期性。(如春季、夏季、秋季)(如春季、夏季、秋季)三、植物生长的相关性三、植物生长的相关性 植物各部分之间的相互协调与相互制约的现象,植物各部分之间的相互协调与相互制约的现象,叫做相关性。叫做相关性。、地上部分与地下部分的相关、地上部分与地下部分的相关 1、相互协调、相互协调 “根深叶茂根深叶茂”、“本固枝荣本固枝荣”。 2、相互制约、相互制约 在水分、养料供应不足的情况下,常常由于竞争在水分、养料供应不足的情况下,常常由于竞争而相互制约,这在植物的而相互制约,这在植物的根根冠冠比比(RT)上尤为明显。上尤为明显。 (RT)变大变大 (RT)变小变小土壤水分状况土壤水分状况 不足不足 充足充足 “旱长根,水长苗旱长根,水长苗”(见下图见下图)土壤通气状况土壤通气状况 良好良好 不良不良土壤供土壤供N状况状况 不足不足 充足充足光照状况光照状况 不足不足 充足充足(见下图见下图)果树整形修剪果树整形修剪 不修剪不修剪 修剪修剪 继续继续返回返回 返回返回、主茎生长与侧枝生长的相关、主茎生长与侧枝生长的相关 1、顶端优势、顶端优势 植物主茎的顶芽抑制侧芽或侧枝生长的现象叫做植物主茎的顶芽抑制侧芽或侧枝生长的现象叫做顶端优势顶端优势。 有些植物顶端优势明显,如松、杉、柏,向日葵、有些植物顶端优势明显,如松、杉、柏,向日葵、玉米、麻类等。玉米、麻类等。 有些植物顶端优势不明显,如柳,水稻、小麦、有些植物顶端优势不明显,如柳,水稻、小麦、大麦等。大麦等。 许多植物的根系也存在顶端优势现象,主根生长许多植物的根系也存在顶端优势现象,主根生长旺盛,侧根生长受抑。一般,直根系有明显的旺盛,侧根生长受抑。一般,直根系有明显的顶端优顶端优势,而势,而须根系则无须根系则无顶端优势。顶端优势。 2、先端优势与成层现象、先端优势与成层现象 先端优势先端优势是指主茎顶芽不抑制侧枝生长,但所有是指主茎顶芽不抑制侧枝生长,但所有枝条的顶芽抑制本枝条下部芽生长的现象枝条的顶芽抑制本枝条下部芽生长的现象(如果树中的如果树中的桃、梨、苹果等桃、梨、苹果等)。 由于一年生枝条只在尖端长出少数生长旺盛的枝由于一年生枝条只在尖端长出少数生长旺盛的枝条,下部光秃或仅形成少量短枝,所以主枝显现出层条,下部光秃或仅形成少量短枝,所以主枝显现出层状排列,进而导致树冠表现出很强的层性,这就是状排列,进而导致树冠表现出很强的层性,这就是成成层现象层现象。 在果树栽培上常利用先端优势与成层现象进行整在果树栽培上常利用先端优势与成层现象进行整形修剪形修剪 。 3、顶端优势、顶端优势(包括先端优势包括先端优势)的机理的机理 K.V蒂曼等人提出了顶端优势的激素学说蒂曼等人提出了顶端优势的激素学说: 主茎主茎顶端合成的顶端合成的IAA向下极性运输,在侧芽积累,而侧芽向下极性运输,在侧芽积累,而侧芽对对IAA的敏感性比主茎强的敏感性比主茎强, 因此侧芽生长受到抑制。距因此侧芽生长受到抑制。距顶芽愈近,顶芽愈近,IAA浓度愈高浓度愈高, 抑制作用愈强抑制作用愈强(见下图见下图)。 后来的研究发现,后来的研究发现,CTK能够促进侧芽生长,破坏能够促进侧芽生长,破坏顶端优势。可以认为,一种植物是否存在顶端优势,顶端优势。可以认为,一种植物是否存在顶端优势,在很大程度上取决于在很大程度上取决于IAA与与CTK的竞争,即的竞争,即IAA/CTK的大小。的大小。 继续继续 返回返回 4、顶端优势的利用、顶端优势的利用 在生产上,有时需利用和保持顶端优势:如麻类、在生产上,有时需利用和保持顶端优势:如麻类、烟草、向日葵、玉米、用材树种等;烟草、向日葵、玉米、用材树种等; 有时需消除顶端优势有时需消除顶端优势:如,幼龄果树去顶,促进侧如,幼龄果树去顶,促进侧枝生长,提高结果量;棉花整枝摘心,防止徒长,减枝生长,提高结果量;棉花整枝摘心,防止徒长,减少蕾铃脱落;移苗时断主根促进侧根生长,提高成活少蕾铃脱落;移苗时断主根促进侧根生长,提高成活率等。率等。、营养生长与生殖生长的相关、营养生长与生殖生长的相关 1、营养生长与生殖生长、营养生长与生殖生长 营养生长:根、茎、叶等营养器官的生长,该阶营养生长:根、茎、叶等营养器官的生长,该阶段位于生长发育的前期。段位于生长发育的前期。 生殖生长:花、果实、种子等生殖器官的形成与生殖生长:花、果实、种子等生殖器官的形成与生长,该阶段位于生长发育的中后期。生长,该阶段位于生长发育的中后期。 营养生长与生殖生长是生长发育的两个不同阶段,营养生长与生殖生长是生长发育的两个不同阶段,它们相互重叠而不能截然分开,且营养生长向生殖生它们相互重叠而不能截然分开,且营养生长向生殖生长的转化是在一定条件下长的转化是在一定条件下(如温度、日照、营养状况等如温度、日照、营养状况等)完成的。完成的。 2、营养生长与生殖生长的关系、营养生长与生殖生长的关系 依存关系依存关系:营养生长是生殖生长的基础,生殖营养生长是生殖生长的基础,生殖生长是营养生长的必然趋势和结果。生长是营养生长的必然趋势和结果。只有将营养生长只有将营养生长转化为生殖生长,开花结实,才有利于提高适应环境,转化为生殖生长,开花结实,才有利于提高适应环境,扩大繁衍后代的能力。扩大繁衍后代的能力。 制约关系:制约关系:a.营养生长能制约生殖生长营养生长能制约生殖生长(过旺则过旺则推迟开花结实,晚熟;不足则穗小果小产量低推迟开花结实,晚熟;不足则穗小果小产量低);b.生生殖生长也能制约营养生长。如生殖器官的形成与生长殖生长也能制约营养生长。如生殖器官的形成与生长往往对营养器官的生长产生抑制作用,并加速营养器往往对营养器官的生长产生抑制作用,并加速营养器官的衰老与死亡。最典型的是果树的大小年现象。官的衰老与死亡。最典型的是果树的大小年现象。四、植物生长的独立性四、植物生长的独立性(即生理上的异质性)(即生理上的异质性) 主要表现在极性与再生作用。主要表现在极性与再生作用。 极性极性是指植物的器官、组织是指植物的器官、组织或细胞的形态学两端在生理上所或细胞的形态学两端在生理上所具有的差异性具有的差异性(即异质性即异质性)。如取一。如取一段柳树枝条,不管正放或倒放,段柳树枝条,不管正放或倒放,总是在形态学上端长芽,形态学总是在形态学上端长芽,形态学下端长根。下端长根。 再生作用再生作用是指植物离体部分是指植物离体部分具有恢复植物其余部分的能力具有恢复植物其余部分的能力(如如插条长出根与芽插条长出根与芽)。 第四节第四节 影响植物生长的环境条件影响植物生长的环境条件一、温度一、温度、生长的三基点温度、生长的三基点温度 植物只有在一定的温度下才能正常生长,温度对植物只有在一定的温度下才能正常生长,温度对植物甚生长存在三基点温度。植物甚生长存在三基点温度。 几种主要农作物的三基点温度几种主要农作物的三基点温度 三基点温度与植物的地理起源有关:三基点温度与植物的地理起源有关: 植物原产地植物原产地 最低温度最低温度 最适温度最适温度 最高温度最高温度 热带亚热带热带亚热带 10 3035 45 温带温带 5 2530 3540 三基点温度也随器官和生育期而异:三基点温度也随器官和生育期而异: 根生长的温度三基点较低,芽较高。根生长的温度三基点较低,芽较高。 幼苗较低,果实或种子成熟时较高。幼苗较低,果实或种子成熟时较高。 、温周期现象、温周期现象 昼夜温度变化对植物生长发育的效应叫昼夜温度变化对植物生长发育的效应叫温周期现温周期现象象。昼夜变温对植物的生长有利。例如,番茄在昼温。昼夜变温对植物的生长有利。例如,番茄在昼温2326和夜温和夜温815条件下生长最快,产量最高。条件下生长最快,产量最高。二、光照二、光照、光质对植物生长的影响、光质对植物生长的影响 蓝紫光有抑制伸长生长的作用,并已具有快速反蓝紫光有抑制伸长生长的作用,并已具有快速反应的特点应的特点(几分钟内即可发生几分钟内即可发生)。(高山植物长不高)(高山植物长不高) 光对形态建成光对形态建成(如高矮、株型、叶色等如高矮、株型、叶色等)的直接影响,的直接影响,叫做光的叫做光的范型作用范型作用,也叫,也叫光形态建成。光形态建成。、光强对植物生长的影响、光强对植物生长的影响 1、强光的影响、强光的影响 强光抑制细胞伸长,促进细胞分化,从而抑制植强光抑制细胞伸长,促进细胞分化,从而抑制植物株体长大,但干重增加。物株体长大,但干重增加。 因此,强光下株型紧凑,因此,强光下株型紧凑,株高降低,节间缩短,叶色株高降低,节间缩短,叶色浓绿,叶片小而厚,根系发浓绿,叶片小而厚,根系发达。达。 2、弱光的影响、弱光的影响 弱光有利于细胞伸长,弱光有利于细胞伸长,但不利于细胞分化。但不利于细胞分化。 因此,弱光下节间伸长,因此,弱光下节间伸长,株高增加,叶色浅,叶片大株高增加,叶色浅,叶片大而薄,植物多汁,根系发育而薄,植物多汁,根系发育不良,植物柔弱。不良,植物柔弱。 三、水分三、水分 水分直接或间接影响植物生长。水分直接或间接影响植物生长。 细胞的分裂与伸长需要充足的水分,使原生质处细胞的分裂与伸长需要充足的水分,使原生质处于水分饱和状态,这是水分的直接作用。于水分饱和状态,这是水分的直接作用。 水分还影响各种代谢过程从而间接地影响植物的水分还影响各种代谢过程从而间接地影响植物的生长。生长。 第五节第五节 植物的运动植物的运动一、植物的向性运动一、植物的向性运动 外界因素对植物单方向刺激所引起的定向生长运外界因素对植物单方向刺激所引起的定向生长运动,叫做植物的动,叫做植物的向性运动。向性运动。、植物的向光性、植物的向光性 植物随着光源的方向而弯曲的现象称为向光性。植物随着光源的方向而弯曲的现象称为向光性。这是植物对单向光刺激的一种反应。分三种类型:这是植物对单向光刺激的一种反应。分三种类型: 1、茎向光源方向弯曲,称为正向光性,如向日葵,、茎向光源方向弯曲,称为正向光性,如向日葵,棉花等。棉花等。 2、根向光源方向弯曲,称为负向光性,如芥子的、根向光源方向弯曲,称为负向光性,如芥子的根,常春藤的气生根等。根,常春藤的气生根等。 3、叶片通过叶柄扭转使其处于对光线适合的位置,、叶片通过叶柄扭转使其处于对光线适合的位置,称为横向光性。称为横向光性。 试验表明:试验表明: 不同波长的光所引起的向光性反应不同不同波长的光所引起的向光性反应不同: 蓝紫蓝紫光最强,黄光最弱,红光居于二者之间。光最强,黄光最弱,红光居于二者之间。 向光性的作用光谱与向光性的作用光谱与胡萝卜素及核黄素的吸胡萝卜素及核黄素的吸收光谱极为相似,因而推测,这两种色素可能是光的收光谱极为相似,因而推测,这两种色素可能是光的直接受体。(见下图)直接受体。(见下图) 机理:经典理论认为:在单向光作用下引起机理:经典理论认为:在单向光作用下引起IAA分布不均匀,向光侧较少,背光侧较多。因此背光侧分布不均匀,向光侧较少,背光侧较多。因此背光侧生长快,向光侧生长慢,导致向光弯曲。现代理论认生长快,向光侧生长慢,导致向光弯曲。现代理论认为:单向光作用下引起生长抑制剂分配不均匀,即向为:单向光作用下引起生长抑制剂分配不均匀,即向光侧含量高,背光侧含量低,于是引起向光弯曲。光侧含量高,背光侧含量低,于是引起向光弯曲。继续继续返返 回回、植物的向重力性、植物的向重力性 播入土中的种子,无论其胚的方向如何,胚根、播入土中的种子,无论其胚的方向如何,胚根、胚芽总是有固定的生长方向,即根总是向下胚芽总是有固定的生长方向,即根总是向下(与重方向与重方向一致一致)生长,称为生长,称为正向重力性正向重力性;芽;芽(茎茎)总是向上总是向上(与重力与重力方向相反方向相反)生长,称为生长,称为负向重力性负向重力性;某些植物;某些植物(如芦苇如芦苇)的地下茎呈水平方向生长,称为的地下茎呈水平方向生长,称为横向重力性横向重力性。 向重力性运动只发生于正在生长的部位。比如,向重力性运动只发生于正在生长的部位。比如,稻麦倒伏后,植株上部又能重新直立,其原因在于茎稻麦倒伏后,植株上部又能重新直立,其原因在于茎节的居间分生组织具有负向地性生长的缘故。节的居间分生组织具有负向地性生长的缘故。(见下图见下图) 向重力性与向重力性与IAA分布有关:如果把燕麦胚芽鞘水分布有关:如果把燕麦胚芽鞘水平放置时,由于重力作用使胚芽鞘顶端平放置时,由于重力作用使胚芽鞘顶端IAA从上边向从上边向下边转移,上侧下边转移,上侧IAA少,下侧少,下侧IAA多,结果下侧比上侧多,结果下侧比上侧生长快,茎向上弯曲,呈负向重力性。生长快,茎向上弯曲,呈负向重力性。 如果是根水平放置,虽如果是根水平放置,虽然然IAA的分布与上述相同,的分布与上述相同,但由于根对但由于根对IAA的敏感性高的敏感性高于芽,所以上侧比下侧生长于芽,所以上侧比下侧生长快,根向下弯曲,呈正向重快,根向下弯曲,呈正向重力性。力性。 现代理论认为,在植物细胞内存在着感受重力反现代理论认为,在植物细胞内存在着感受重力反应的受体,是一些特殊的淀粉粒,称之为平衡石。据应的受体,是一些特殊的淀粉粒,称之为平衡石。据推测,在根冠、胚芽鞘尖和茎的内皮层细胞中均存在推测,在根冠、胚芽鞘尖和茎的内皮层细胞中均存在作为平衡石的淀粉颗粒。作为平衡石的淀粉颗粒。 在重力作用下平衡石沉于细胞底部。平衡石的移在重力作用下平衡石沉于细胞底部。平衡石的移动导致电荷分布不均动导致电荷分布不均(电势差电势差),引起,引起IAA分布不匀,从分布不匀,从而造成植物的向重力性。而造成植物的向重力性。(见下图见下图)、植物的向化性与向水性、植物的向化性与向水性 植物的向化性是指由于某些化学物质在植物周围植物的向化性是指由于某些化学物质在植物周围分布不匀而引起的生长。分布不匀而引起的生长。 植物的向水性是指土壤水分分布不匀时根总是向植物的向水性是指土壤水分分布不匀时根总是向着湿润地方生长的特性。着湿润地方生长的特性。 继续继续返回返回二、植物的感性运动二、植物的感性运动 感性运动感性运动是指无一定方向的外界因素均匀地作用是指无一定方向的外界因素均匀地作用于整株植物或某些器官所引起的运动。于整株植物或某些器官所引起的运动。 、植物的感夜性运动、植物的感夜性运动 植物感夜性运动植物感夜性运动是指由于昼夜交替,光照与温度是指由于昼夜交替,光照与温度的变化而引起的生长运动。某些植物的花或叶片随昼的变化而引起的生长运动。某些植物的花或叶片随昼夜交替而开放或闭合即是。如蒲公英的头状花序昼开夜交替而开放或闭合即是。如蒲公英的头状花序昼开夜合;烟草和月见草的花夜开昼合;合欢的小叶昼开夜合;烟草和月见草的花夜开昼合;合欢的小叶昼开夜合。夜合。、植物的感震性运动、植物的感震性运动 植物的感震性运动植物的感震性运动是由于机械刺激而引起的与生是由于机械刺激而引起的与生长无关的植物运动。长无关的植物运动。 如含羞草的部分小叶受到震动或机械刺激时,小如含羞草的部分小叶受到震动或机械刺激时,小叶立刻成对合拢;如刺激再加强时可传至其它部位甚叶立刻成对合拢;如刺激再加强时可传至其它部位甚至全株,使全部小叶合拢,复叶叶柄下垂。至全株,使全部小叶合拢,复叶叶柄下垂。 含羞草含羞草感震感震复叶下垂的机理是由于复叶的叶柄基复叶下垂的机理是由于复叶的叶柄基部叶褥细胞的膨压变化引起的。(见下图)部叶褥细胞的膨压变化引起的。(见下图)、植物的感触性运动、植物的感触性运动 一般,食虫植物叶片的运动基本上都是感触性运一般,食虫植物叶片的运动基本上都是感触性运动。如捕蝇草等叶片密布触毛,当昆虫碰上这些触毛动。如捕蝇草等叶片密布触毛,当昆虫碰上这些触毛时,触毛即向内弯曲,把昆虫包起来,将其消化掉,时,触毛即向内弯曲,把昆虫包起来,将其消化掉,以补充营养。以补充营养。三、植物的近似昼夜节奏运动三、植物的近似昼夜节奏运动 有些植物有些植物(如菜豆如菜豆)叶片的位置昼夜之间发生有规律叶片的位置昼夜之间发生有规律性的变化,白天呈水平方向伸展,夜间下垂。植物的性的变化,白天呈水平方向伸展,夜间下垂。植物的这种运动称为这种运动称为就眠运动就眠运动。 (见下图)(见下图) 植物的就眠运动可能由内部的测时系统所控制,植物的就眠运动可能由内部的测时系统所控制,这是一种内生的昼夜节奏运动。但是,实际观测表明,这是一种内生的昼夜节奏运动。但是,实际观测表明,内生昼夜节奏运动的周期不是正好等于内生昼夜节奏运动的周期不是正好等于24小时,而是小时,而是2228小时小时(图图8-28)。因此,有人认为这是近似的内生。因此,有人认为这是近似的内生昼夜节奏,即生物钟或生理钟昼夜节奏,即生物钟或生理钟 生物钟具有两个特点:生物钟具有两个特点: 一是生物钟的运动可被重新调拨。一是生物钟的运动可被重新调拨。 二是生物钟的运动周期对温度不敏感,说明它不二是生物钟的运动周期对温度不敏感,说明它不是以化学变化为基础的。是以化学变化为基础的。 世界各地都有食肉植物,大部分分布在更加传统的营养源不存在的地方。有人在爱尔兰的沼泽里发现长着圆圆的叶子的茅膏菜茅膏菜。沼泽所具有的自由流动的性质,意味着大部分营养成分都会随着流水而流失。为了适应这种环境,茅膏菜必须依靠进化,利用不同的营养源动物获得营养成分。 茅膏菜利用自身鲜亮的色彩和甜美的花蜜吸引昆虫落在叶子上突出的“腺状触须”上。昆虫降落在上面后,茅膏菜利用黏液把它粘住,然后每一根触须都开始向昆虫弯曲,把它团团围住,让黏液把它粘得更牢。接着茅膏菜开始利用消化液分解昆虫的软组织。几天后,这个微型“棺材”会再次打开,把昆虫的残骸抛入风中。名词解释名词解释: 渗透作用渗透作用 蒸腾作用蒸腾作用 蒸腾速率蒸腾速率 蒸腾效率蒸腾效率 蒸腾系数蒸腾系数 矿质营养矿质营养 杜南平衡杜南平衡 光合作用光合作用 光合速率光合速率 光饱和点光饱和点 光补偿点光补偿点 呼吸作用呼吸作用 有氧呼吸有氧呼吸 无氧呼吸无氧呼吸 呼吸速率呼吸速率 植物激素植物激素 种子休眠种子休眠 生理休眠生理休眠 顶端优势顶端优势 先端优势先端优势 向性运动向性运动 感性运动感性运动 春化作用春化作用 临界日长临界日长 临界夜长临界夜长
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学培训


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!