高考物理大题尖子生必备!.

上传人:小** 文档编号:77113257 上传时间:2022-04-19 格式:DOC 页数:23 大小:1,013KB
返回 下载 相关 举报
高考物理大题尖子生必备!._第1页
第1页 / 共23页
高考物理大题尖子生必备!._第2页
第2页 / 共23页
高考物理大题尖子生必备!._第3页
第3页 / 共23页
点击查看更多>>
资源描述
1如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场 B,一个质量为 m=0- 1 kg,带电量为q=0. 5 C的物体,从板的P端由静止开始在 电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬C点,PC=L/4,物体与平板间的动摩擦因数间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在 为 卩=0. 4,取 g=10m/s能回到Q点.若木块A静止于P点,木块C从Q点开始以初速度 的R点,求P、R间的距离L的大小。,求:(1) 判断物体带电性质,正电荷还是负电荷?(2) 物体与挡板碰撞前后的速度V1和V2(3) 磁感应强度B的大小4)电场强度E的大小和方向2(10分)如图2 14所示,光滑水平桌面上有长 L=2m的木板C,质量m=5kg,在其正中央并排放着两个小滑块A和B,m=1kg,m=4kg,开始时三物都静止.在A B间有少量塑胶炸药, 爆炸后A以速度6n)/s水平向左运动,A、B中任一块与挡板碰撞后, 都粘在一起,不计摩擦和碰撞时间,求:(1) 当两滑块A、B都与挡板碰撞后,C的速度是多大?到A B都与挡板碰撞为止,C的位移为多少?#2#3 (10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个l4 光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F1,放手后,木板沿斜面下滑,稳定后弹簧示数为F2,测得斜面斜角为则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)#第17曲图mA =mB =m mC =3 m,它们与斜4有一倾角为B的斜面,其底端固定一挡板M,另有三个木块A、B和C,它们的质量分别为面间的动摩擦因数都相同.其中木块A连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M相连,如图所示.开始时,木块A静止在P处,弹簧处于自然伸长状态.木块B在Q点以初速度v0向下运动,P、Q间的距离为L.已知木块B在下滑过程中做匀速直线运动,与木块 A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B向上运动恰好#亍0向下运动,经历同样过程,最后木块C停在斜面上#5如图,足够长的水平传送带始终以大小为v = 3m/s的速度向左运动,传送带上有一质量为M= 2kg的小木盒A,A与传送带之间的动摩擦因数为 卩=0. 3,开始时,A与传送带之间保持相对静止。先后相隔t = 3s有两个光滑的质量为 m= 1kg的小球B自传送带的左端岀发,以 V0= 15m/s的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时厶t1= 1s/3而与木盒相遇。求(取 g= 10m/s2)(1 )第1个球与木盒相遇后瞬间,两者共同运动的速度时多大?(2)第1个球岀发后经过多长时间与木盒相遇?3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?6如图所示,两平行金属板AB长|= 8cm,两板间距离d= 8cm,A板比B板电势高300V,即LAb= 300V。一带正电的粒子电量q= 10-10C,质量m= 10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v=2xio6m/s,粒子飞出平行板电场后经过界面MN PS间的无电场区域后,进入固定在中心线上的0点的点电荷 Q形成的电场区域(设界面 PS右边点电荷的电场分布不受界面的影响)。已知两界面 MN PS相距为L= 12cm,粒子穿过界面 PS最后垂直打在放置于中心线上的荧光屏EF上。求(静电力常数 k=9X109N-m2/C2)(1)粒子穿过界面PS时偏离中心线R0的距离多远?2 )点电荷的电量。A lRV0V3#7光滑水平面上放有如图所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m距滑板的A壁为L1距离的B处放有一质量为 m电量为+q的大小不计的小物体,物体与板面的摩擦不计整个装置置于场强为E的匀强电场中,初始时刻,滑板与物体都静止试问:(1)释放小物体,第一次与滑板 A壁碰前物体的速度V1,多大?(2)若物体与A壁碰后相对水平面的速度大小为碰前速率的3/5,则物体在第二次跟 A碰撞之前,滑板相对水平面的速度V2和物体相对于水平面的速度 V3分别为多大?(3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失)8如图(甲)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O和O,水平放置的平行金属导轨P、Q与金属板C D接触良好,且导轨垂直放在磁感强度为B=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向从t=0时刻开始,由C板小孔O处连续不断地以垂直于 C板方向飘入质量为 m=3.2 x10-21kg、电量q=1.6 X10 -19C的带正电的粒子(设飘入速度很 小,可视为零).在D板外侧有以MN为边界的匀强磁场 B2=10T, Mh与D相距d=10cm, B和R方向如图所示(粒子重力及 其相互作用不计),求(1)0到4.0s内哪些时刻从 O处飘入的粒子能穿过电场并飞出磁场边界MN起抠 箕K富阳 真厲胃 M(2)粒子从边界MN射出来的位置之间最大的距离为多少?10(14分)长为0.51m的木板A,质量为1 kg .板上右端有物块 B,质量为3kg.它们一起在光滑的水平面上向左匀速运动 速度vo=2m/s.木板与等高的竖直固定板 C发生碰撞,时间极短,没有机械能的损失物块与木板间的动摩擦因数卩=0.5.g取 10m/s2.求:(1 )第一次碰撞后,A、B共同运动的速度大小和方向.(2) 第一次碰撞后,A与C之间的最大距离.(结果保留两位小数)(3) A与固定板碰撞几次,B可脱离A板.4#111如图10是为了检验某种防护罩承受冲击能力的装置,m为半径为R 1.0m、固定于竖直平面内的光滑圆弧轨道,轨道上端切线水平,N为待检验的固定曲面,该曲面在竖直面内的截面为半径r 、0.69m的丄圆弧,圆弧下端切线水平且圆心恰好位于 M轨道的上端点,M的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量4 m 0.01kg的小钢珠,假设某次发射的钢珠沿轨道恰好能经过m的上端点,水平飞出后落到 n的某一点上,取g 10m/ s2,求:(1) 发射该钢珠前,弹簧的弹性势能Ep多大?(2)钢珠落到圆弧N上时的速度大小vN是多少?(结果保留两位有效数字)*P10P1012建筑工地上的黄沙堆成圆锥形,而且不管如何堆其角度是不变的。若测出其圆锥底的周长为 示。12. 5m高为1 5m,如图所(1 )试求黄沙之间的动摩擦因数。2)若将该黄沙靠墙堆放,占用的场地面积至少为多少?13 (16 分)如图17所示,光滑水平地面上停着一辆平板车,其质量为2m长为L,车右端(A点)有一块静止的质量为 m的小金属块金属块与车间有摩擦,与中点C为界,AC段与CB段摩擦因数不同现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力已知撤去力的瞬间,金属块的速度为V0,车的速度为2V0,最后金属块恰停在车的左端(B点)。如果金属块与车的 AC段间的动摩擦因数为 1,与CB段间的动摩擦因数为B 一C*1F2,E、方向水平向右,其宽度B方向垂直纸面向外;右侧匀强磁场的磁感应强度大/图也为7B、方向垂直14(18分)如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强,为L;中间区域匀强磁场的磁感应强度大小为纸面向里。一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了 a点,然后重复上述运动过程。(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示 有什么障碍物)。(1)中间磁场区域的宽度 d为多大;(2)带电粒子在两个磁场区域中的运动时间之比;3)带电粒子从a点开始运动到第一次回到 a点时所用的时间t.15. (20分)如图10所示,abed是一个正方形的盒子,在 cd边的中点有一小孔 e,盒子中存在着沿 ad方向的匀强电场,场 强大小为吕一粒子源不断地从 a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为vo,经电场作用后恰好从 e处的小孔射出。现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为 从e孔射岀。(带电粒子的重力和粒子之间的相互作用力均可忽略)(1)所加磁场的方向如何?(2 )电场强度E与磁感应强度 B的比值为多大?B (图中未画出),粒子仍恰好16 如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5X10-3C电量的正电荷,在电场力作用下由静止开始运 动,不计一切摩擦,g=10m/s2,(1) 若它运动的起点离 A为L,它恰能到达轨道最高点 B,求小球在B点的速度和L的值.若它运动起点离 A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.6#17如图所示,为某一装置的俯视图,PQ MN为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B,方向竖直向下金属棒AE搁置在两板上缘,并与两板垂直良好接触现有质量为m带电量大小为q,其重力不计的粒子,以初速 V0水平射入两板间,问:(1)金属棒AB应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动?(2)若金属棒的运动突然停止, 带电粒子在磁场中继续运动, 从这刻开始位移第一次达到 mv/qB时的时间间隔是多少?(磁场足够大)PAQXXXXXXXXXV对XXXXXXXXM BN18(12分)如图所示,气缸放置在水平平台上,活塞质量为10kg,横截面积50cm,厚10cm,度1cm,气缸全长21cm,气缸质量20kg,大气压强为1 x105Pa,当温度为7C时,活塞封闭的气柱长 放置时,活塞下方的空气能通过平台上的缺口与大气相通。g取10m/s2求:(1) 气柱多长?(2) 当温度多高时,活塞刚好接触平台?3)当温度多高时,缸筒刚好对地面无压力。(活塞摩擦不计)。19 (14分)如图所示,物块 A的质量为M,物块B、C的质量都是 m并都可看作质点,且 m MX 2m三物块用细线通过 滑轮连接,物块 B与物块C的距离和物块 C到地面的距离都是L。现将物块A下方的细线剪断,若物块 A距滑轮足够远且不计一切阻力。求:(1) 物块A上升时的最大速度;2) 物块A上升的最大高度。#20. M是气压式打包机的一个气缸,在图示状态时,缸内压强为Pl,容积为Vo. N是一个大活塞,横截面积为 S2,左边连接有推板,推住一个包裹缸的右边有一个小活塞,横截面积为S1,它的连接杆在B处与推杆A0以铰链连接,0为固定转动轴,B、0间距离为d.推杆推动一次,转过B角(B为一很小角),小活塞移动的距离为 dB,则(1) 在图示状态,包已被压紧,此时再推一次杆之后,包受到的压力为多大 化不计)(2) 上述推杆终止时,手的推力为多大?(杆长AO L,大气压为Po)?(此过程中大活塞的位移略去不计,温度变21. (12分)如图,在竖直面内有两平行金属导轨AB CD导轨间距为L,电阻不计。一根电阻不计的金属棒ab可在导轨上无摩擦地滑动。棒与导轨垂直,并接触良好。导轨之间有垂直纸面向外的匀强磁场,磁感强度为B。导轨右边与电路连接。电路中的三个定值电阻阻值分别为2R R和R。在BD间接有一水平放置的平行板电容器 C,板间距离为do(1)当ab以速度vo匀速向左运动时,电容器中质量为m的带电微粒恰好静止。试判断微粒的带电性质,及带电量的大小。(设带电微粒始终未与ab棒由静止开始,以恒定的加速度a向左运动。讨论电容器中带电微粒的加速度如何变化。2 (12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿 y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场。在第四象限,存在沿y轴负方向,场强极板接触。)7NQ大小与第三象限电场场强相等的匀强电场。一质量为m电量为q的带电质点,从y轴上y=h处的p1点以一定的水平初速度沿x轴负方向进入第二象限。然后经过x轴上x=-2h处的p2点进入第三象限,带电质点恰好能做匀速圆周运动。之后经过轴上y=-2h处的p3点进入第四象限。已知重力加速度为g。求:(1) 粒子到达p2点时速度的大小和方向;(2) 第三象限空间中电场强度和磁感应强度的大小;(3) 带电质点在第四象限空间运动过程中最小速度的大小和方向23. (20分)如图所示,在非常高的光滑、绝缘水平高台边缘,静置一个不带电的小金属块B,另有一与B完全相同的带电量为+q的小金属块A以初速度V。向B运动,A、B的质量均为m A与B相碰撞后,两物块立即粘在一起,并从台上飞出。已知 在高台边缘的右面空间中存在水平向左的匀强电场,场强大小E=2mq。求:(1) A、B一起运动过程中距高台边缘的最大水平距离2) A、B运动过程的最小速度为多大(3)从开始到A B运动到距高台边缘最大水平距离的过程A损失的机械能为多大?ti n24如图11所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为 B,磁场方向垂直纸面向里,MN PC是磁场的边界。质量为m带电量为一q的粒子,先后两次沿着与 MN夹角为0 (0 0 90o )的方向垂直磁感线射入匀强磁场B中,第一次,粒子是经电压 U加速后射入磁场,粒子刚好没能从PQ边界射岀磁场。第二次粒子是经电压U加速后射入磁场,粒子则刚好垂直PQ射岀磁场。不计重力的影响,粒子加速前速度认为是零,求:(1 )为使粒子经电压 U加速射入磁场后沿直线运动,直至射岀PQ边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。PXXXXM(2)加速电压U1的值。U28NQ25. ( 20分)空间存在着以x=0平面为分界面的两个匀强磁场,左右两边磁场的磁感应强度分别为B和B2,且B:R=4:3,方向如图所示。现在原点 o处一静止的中性原子, 突然分裂成两个带电粒子 a和b已知a带正电荷,分裂时初速度方向为沿 x轴正方向,若a粒子在第四次经过y轴时,恰好与(1)a粒子在磁场Bi中作圆周运动的半径与2) a粒子和b粒子的质量之比。b粒子第一次相遇。求:b粒子在磁场R中圆周运动的半径之比。X X X X*tx XX X X XX X X Xlx XX X X X.于仝X X X5 x *X冥X XX X X XX XB光滑,b!C粗糙,CABC为直轨道,E为光滑圆弧轨道,轨道半径为 R 直轨道与圆弧轨道相切于 C点,其中圆心O与BE在同一水平面上,OD竖直,/ COD0,且ev 5。现有一质量为 m的 小物体(可以看作质点)从斜面上的A点静止滑下,小物体与 BC间的动摩擦因数为,现要使小物体第一次滑入圆弧轨26如图所示,ABCD为固定在竖直平面内的轨道,道即恰好做简谐运动(重力加速度为g)。求:(1)小物体过D点时对轨道的压力大小(2) 直轨道AB部分的长度S1. ( 1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为mg=qBv2 L 1(2)离开电场后,按动能定理,有:-卩mg=0mV42所以物体带正电荷.且由式得:V2=2 . 2 m/s(3)代入前式求得:2(4)由于电荷由P运动到C点做匀加速运动,可知电场强度方向水平向右,且:(Ec-卩mg)1 mv2-02进入电磁场后做匀速运动,故有:Ec=卩(qBv+mg 由以上两式得:V1 42m/sE 2.4 N/C2 (1) A、B、C系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C的速度为零,即VC0(2)炸药爆炸时有mAVAmBVB解得 vB 1.5m/s又 mASA mBSB当sa=1 m时sb= 0.25m,即当A C相撞时B与C右板相距s SB 0 75m2A、C相撞时有:mAVA(mA mC)V解得V = 1m/s,方向向左而vB = 1.5m/s,方向向右,两者相距 0.75m,故到A, B都与挡板碰撞为止,C的位移为9Scsv0.3 m19.410V Vb3固定时示数为F1,对小球F1 =mgsin 9整体下滑:(M+r) sin 9 -卩(M+m)gcos 9 =(M+m)a 下滑时,对小球: mgsin 9 -F 2 =ma由式、式、式得F2卩=(3mgsin 9 + g 3mgcos 9) L在木块压缩弹簧的过程中,重力对木块所做的功与摩擦力对木块所做的功大小相等,因此弹簧被压缩而具有的最大弹性势能等于开始压缩弹簧时两木块的总动能 tan 9Fi4 .木块B下滑做匀速直线运动,有mgsin 9 = g mgcos9B 和A相撞前后,总动量守恒mVohZmVr,所以=Vo12设两木块向下压缩弹簧的最大长度为s,两木块被弹簧弹回到P点时的速度为v2,则1 21c 2g 2mgcos9 2s= mV2mv22 2两木块在P点处分开后,木块 B上滑到Q点的过程:1 2(mgsin 9 +g mgcos9) L= mv22木块C与A碰撞前后,总动量守恒,则3m-Vo4mv1,所以4#4112s=4mv24mv 22木块C与A在P点处分开后,木块C上滑到R点的过程:设木块 C和A压缩弹簧的最大长度为s ,两木块被弹簧弹回到 P点时的速度为v 2 ,则g 4mgcos 94#4#1=一 3mv2因此,木块B和A压缩弹簧的初动能 Ek1 2 mv122丄mv,木块C与a压缩弹簧的初动能 Ek2丄mv:422mvo,即 Ek!Ek2因此,弹簧前后两次的最大压缩量相等,即s=s2综上,得L =LVo32g sin4#5125(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为V1,根据动量守恒定律:mv0 Mv (m M )v1( 1 分)代入数据,解得:v1=3m/s( 1分)(2)设第1个球与木盒的相遇点离传送带左端的距离为s,第1个球经过to与木盒相遇,贝U:t0(1 分)vo设第1个球进入木盒后两者共同运动的加速度为a,根据牛顿第二定律:2(m M )g (m M )a得:a g 3m/s(1 分)设木盒减速运动的时间为 11,加速到与传送带相同的速度的时间为t2,则:t1 t2故木盒在v=1sa2s内的位移为零(1 分)(1 分)依题意:s v t1 v( t t1 t1 t2 t)(2 分)#5#5代入数据,(3)自木盒与第解得:s=7. 5m10=0. 5s1个球相遇至与第2个球相遇的这一过程中(1分),传送带的位移为S,木盒的位移为S1,则:#5#5v( t t1t0)8.5m(1 分)$ v( tt1 t1 t2 t0)2.5m故木盒相对与传送带的位移:S!6m则木盒与传送带间的摩擦而产生的热量是:54J设粒子从电场中飞岀时的侧(1 分)(2 分)h=at2/2向位移为(1 分)h,穿过界面PS时偏离中心线OR的距离为y,贝U :qEqUmdv即:qU(丄)22md v0(1 分)h=0.代入数据,带电粒子在离开电场后将做匀速直线运动解得:03m=3cm(1 分)由相似三角形知识得:丄h 2V 2代入数据,解得:(1 分)y=0. 12m=12cm(1 分)(2 )设粒子从电场中飞出时沿电场方向的速度为mqUlvy,贝 D: vy=at=-#5mdv(1 分)代入数据,解得:v y=1 . 5X10 m/s所以粒子从电场中飞出时沿电场方向的速度为:#2.5 106m/s(1 分)设粒子从电场中飞出时的速度方向与水平方向的夹角为e,则:V 3 tan 丄-V0437(1 分)因为粒子穿过界面 PS最后垂直打在放置于中心线上的荧光屏上,所以该带电粒子在穿过界面 匀速圆周运动,其半径与速度方向垂直。PS后将绕点电荷Q作匀速圆周运动的半径:rcos0.15m(1 分)由:kQq2r2Vm r(2 分)(1 分)代入数据,解得:Q=1. 04X10 -8C7(1)释放小物体,物体在电场力作用下水平向右运动,此时,滑板静止不动,对于小物体,13#由动能定理得:EqL1沖V12EqL1m 碰后小物体反弹,由动量守恒定律:得mv.m|w 得 4mv2V2#277 2EqL5V1得:v3寸1矗位移相等、时间相等、平均速度相等(3)电场力做功等于系统所增加的动能4mv;8. (1)只有当CD板间的电场力方向向上即AB棒向右运动时,粒子才可能从 0运动到0,而粒子要飞出磁场边界 MN最小速度Vo必须满足:d陛qB2设CD间的电压为U,则qU滑板以V2匀速运动,直到与物体第二次碰撞,从第一次碰撞到第二次碰撞时,物体与滑板 3V1 V3V2#解得 U=25V,又U= =BLv所以根据(乙)图可以推断在(2)当AB棒速度最大,即 =BLv =100V此时带电粒子经加速后速度为V,由动能定理有:解得L: mv=100m/s此时带电粒子2的轨道半径为R竺qB2o.出射点与O的水平距离为:x RR2 d2 0.027m 2.7cm.S=d-x =7.3cm问6分,共20分粒子从边界MN射出来的位置间最大距离为9第(1)问8分,第(2 )问6分,第(3)解:(1) U型框向右运动时,NQ边相当于电源,产生的感应电动势E Blv0当如图乙所示位置时,方框bd之间的电阻为r 3rRbdr 3r解得 v=5m/s.0.25st 0.51m即三次碰撞后B可脱离A板.11 (13 分)2(1 )设钢珠在M轨道最高点的速度为v,在最高点,由题意vmg m2 分R从发射前到最高点,由机械能守恒定律得:EpmgR1 2mv2 分2(2)钢珠从最高点飞岀后,做平抛运动x vt1分1 2y -gt1 分2由几何关系2y2 r22分从飞出M到打在N得圆弧面上,由机械能守恒定律:1 2 1 2 mgy mvmvN2分2 2联立、解出所求 vN 5.0 m/ s 1分mg sin Ff mg cos所以 tan - i 0.75,37R I(2 )因为黄沙是靠墙堆放的,只能堆成半个圆锥状,(称为摩擦角)由于体积不变,不变,要使占场地面积最小,则取所以有hRx,根据体积公式,该堆黄沙的体积为R3,因为靠墙堆放只能堆成半个圆锥,R为最小,故 V 1 R,8_ 1解得Rx32R,占地面积至少为S -97m13 设水平恒力F作用时间为t1.对金属块使用动量定理 Fit1=mv-0即:111mgt1=mvVo得t1=1g对小车有(F- Fi) t1=2mX2w 0,得恒力 f=5 11mg金属块由c过程中做匀加速运动,加速度a1 = Fm1mg1g小车加速度a2F F5 1mg1mg2m2m2 1g金属块与小车位移之差归腐如出22 2*2 1g.2而s L,二.虫2gL从小金属块滑至车中点2rm.2 m, B物体将不会着地Mgh- mgh = (M+m)V 12(M m)V2(mH_ = L + h = L +(M m)V2(m20#若M = . 2 m, B恰能着地,A物体再上升的高度等于 Lo H2 = 2L1Mg L mg L =(M+m) (V v2)1分22 2亠 4(2m M )gL.分(mM )(2m M )2h =v2 2=2(2m M )L1分2g(m M )(2m M )H3 = 2L +2h = 2L +2(2mM2)l1分(m M )(2mM )20(1) F=P 1V0 / (Vo-d9 S1) - PoS 2 F=PNo / (Vo-d若M i 2 m, B物体着地后,A还会上升一段21 . (12 分)9 S) - PoS1d / L解:(1)棒匀速向左运动,感应电流为顺时针方向,电容器上板带正电T微粒受力平衡,电场力方向向上,场强方向向下二微粒带负电(1分)Uc mg=qdU=IRIE =由以上各式求岀_E_3RBlvo(2)经时间t。,微粒受力平衡(1分)(1分)(1分)(1分)3mgd1 Blvomg= 6 qd(1 分)(1分)#1Uc 3Blat0(i 分)求出t。皿或to V0Blaqa当t t o时,a3 = Blaq t - g,越来越大,加速度方向向上3md(1分)(1分)(1 分)(1分)22.解:(1)质点从P1到P2,由平抛运动规律h=Igt222hv y gtv0 t求出v= vvy 2電药方向与x轴负方向成45角(2)质点从P2到P3,重力与电场力平衡,洛仑兹力提供向心力Eq=mgBqv=m(2R)解得e= mgq2=(2h)2+(2h)B=m 2g q , h211#1(1)质点进入第四象限,水平方向做匀速直线运动, 竖直方向做匀速直线运动。当竖直方向的速度减小到o,此时质点速度最小,即v在水平方向的分量vmin VCOS45 = . 2gh方向沿x轴正方向23 解:(20 分)(1)由动量守恒定律: muo=2mu 2分碰后水平方向:qE=2maE 2mg 2分q-2 aX=o- u 2 分2得:Xm 1分8g(2)在t时刻,AB的水平方向的速度为at 7 gt竖直方向的速度为u Y=gt#1#1合速度为:合#2解得U合的最小值:min04(3)碰撞过程中A损失的机械能:碰后到距高台边缘最大水平距离的过程中A损失的机械能:1E22222#22qEXm m 08从开始到A、B运动到距离高台边缘最大水平距离的过程中A损失的机械能为:24 (20 分)(1)如图答1所示,经电压u2加速后以速度v2射入磁场,粒子刚好垂直 PQ射出磁场,可确定粒子在磁场中做匀速圆周运动的圆心在PQ边界线的O点,半径R2与磁场宽L的关系式为#2#2XVNB XX X RX反。(2分),又&mv2(2 分),解得 v2BqLmcos加匀强电场后,粒子在磁场中沿直线运动射岀PQ边界的条件为(2 分)(2 分)Eq= Bqv2 ( 2分),电场力的方向与磁场力的方向相#2#22分),与磁场边界夹角为(2分),如B2qL由此可得岀E,E的方向垂直磁场方向斜向右下(mcos#2#2图答2所示。#2#2PQ边界相(2)经电压U1加速后粒子射入磁场后刚好不能从PQ边界射出磁场,表明在磁场中做匀速圆周运动的轨迹与#2#2要确定粒子做匀速圆周运动的圆心O的位置,如图答3所示,圆半径R1与L的关系式为:R R- cos , R1 cos(2 分)#2(2 分) fmv1BqL又R|1,解得V|Bqm(1 cos )#由于U 1q-mv2 , U 2q21 2mv22所以u-v-2U2 v;2COS(1 cos )2(2分25、( 20分)(1)原子为中性,分裂后一定有 qa=-qb( b 一定带负电) 原子分裂前后动量守恒,则(2粒子在磁场中运动时由牛顿定律有Pa+p=0分)(2 分)2mv qvB -R(2 分)R -(2分)qBqB则:R昱3(2分)RbBl4(2) a、b粒子相遇时:t a=t b(2分)由题意分析可知,a粒子在第四次经过y轴与b粒子第一次相遇时,b粒子应第三次经过t a=Ta1+Ta2tb=Tb1 +Tb2/2(2分)2 R2 n/ T(2分)vqB.2 ma2帀2 mb2氐- ta-tbqB1qB2qB1qB2即2 ma2 na2 mb2 nb(2分)qB1qB2qBiqB2代入数据并化简得:ma2ma匹mb2323解之得:叫5mb7mvy轴。则26 (1)小物体下滑到C点速度为零才能第一次滑入圆弧轨道即恰好做简谐运动一 1 2从C到D由机械能守恒定律有:mgR1-cos e )=mv;2在d点用向心力公式有:2F- m(=mmvD解以上二个方程可得:R从A到C由动能定理有:mgsin e (S+Rcot e )-卩 mgcos e Rcot e =0F=3mg2mos e2解方程得:s=(卩cot2 e -cot e )r239 (20分)如下图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B.边长为I的正方形金属框abed (下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U型金属框架MNPQ仅有MN NQ QP三条边,下简称 U型框),U型框与方框之间接触良好且无摩擦两个金属框每条边的质量均为m每条边的电阻均为r.(1 )将方框固定不动,用力拉动 U型框使它以速度V0垂直NC边向右匀速运动,当 U型框的MP端滑至方框的最右侧(如图 乙所示)时,方框上的 bd两端的电势差为多大?此时方框的热功率为多大 ?(2)若方框不固定,给U型框垂直NC边向右的初速度v0,如果U型框恰好不能与方框分离,则在这一过程中两框架上产生 的总热量为多少?(3) 若方框不固定,给U型框垂直NC边向右的初速度V ( v V0 ), U型框最终将与方框分离.如果从U型框和方框不再接 触开始,经过时间t后方框的最右侧和 U型框的最左侧之间的距离为 S.求两金属框分离后的速度各多大.#
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!