资源描述
宁XX大学课程设计(论文)630mm(工件最大回转直径)经济型数控车床设计(105%系列)所在学院专 业班 级姓 名学 号指导老师 年 月 日目 录目 录II第1章 绪 论11.1 课题研究的意义11.2 数控机床的发展趋势和研究方向11.2.1 高速度、高精度化21.2.2多功能化31.2.3智能化41.2.4数控系统小型化51.2.5数控编程自动化51.2.6更高的可靠性51.3 本课题研究的参数要求6第2章 总体设计方案72.1数控车床的总体任务72.2运动系统方案确定72.2.1伺服系统的选择72.2.2传动方式的选择72.3数控系统电路原理图设计82.4数控系统硬件结构82.5数控系统软件结构9第3章 纵坐标进给伺服进给结构设计103.1 确定脉冲当量103.2 切削力的计算103.3滚珠丝杠螺母副的计算和选型113.3.1 精度的选择113.3.2丝杠导程的确定113.3.3 最大工作载荷的计算123.3.4 最大动载荷的计算123.3.5 滚珠丝杠螺母副的选型133.3.6 滚珠丝杠副的支承方式133.4.3 传动效率的计算143.3.8 刚度的验算143.3.9 稳定性校核153.3.10 临界转速的验证153.4 齿轮传动的计算163.5 步进电动机的选择163.6导轨的特点194.3 导轨的设计203.8 导轨贴塑工艺及其加工223.8.1 贴塑原料的选择223.8.2 金属粘接面的预加工233.8.3 贴塑工艺233.8.4 塑料面的机械加工253.8.5 配置面的加工253.8.6检查25第4章 横坐标进给伺服进给结构设计274.1切削力的计算274.2 滚珠丝杠螺母副的计算和选型274.2.1 最大工作载荷的计算274.2.2 最大动载荷的计算274.2.3滚珠丝杠螺母副的选型284.2.4 滚珠丝杠副的支承方式284.2.5 传动效率的计算284.2.6 刚度的验算284.2.7 稳定性校核294.2.8临界转速的验证294.3 进给伺服系统传动计算304.3.1确定传动比304.3.2齿轮参数的计算304.4.步进电机的计算和选用304.4.1转动惯量的计算304.4.2电机力矩的计算324.5步进电机的选择34第5章 微机控制应用系统电路设计355.1硬件电路设计355.1.1 数控系统的硬件结构355.1.2 数控系统硬件电路的功能355.1.3 主控芯片简介365.1.4位置半闭环控制电路设计395.1.5 变频调速电路设计415.1.6 电动回转刀架控制电路设计425.1.7 串行通信接口电路设计435.1.8 继电器驱动电路设计44参考文献46致 谢47第1章 绪 论1.1 课题研究的意义机床是装备制造业的工作母机,是实现制造技术和装备现代化的基石。数控机床是一种高效率、高精度,能保证加工质量,解决工艺难题,而且又有一定柔性的生产设备。自五十年代末世界上第一台数控机床在美国研制成功的半个多世纪以来,数控技术正在发生根本性变革,由专用封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在美国、日本和德国等发达国家,他们的机床改造作为新的经济增长行业,正处在黄金时代,由于技术的不断进步,机床改造是个永恒的课题。在国内,机床的数控化改造是发展我国数控设备的一个重要方面。车床是金属切削加工最常用的一类机床,它能够加工内外圆柱面、圆锥面、端面、螺纹等。普通车床由于造价低廉在我国运用十分广泛,但是因为其进给轴不能联动,切削次序需要人工控制,致其效率低下并且无法加工复杂的回转零件。对普通车床的数控化改造,主要是将纵向和横向进给系统改成用微机控制的并能独立运动的进给伺服系统;将手动刀架换成能自动换刀的电动刀架。这样,利用数控装置,车床就可以按预先输入的加工指令进行切削加工。数控车床针对性高,专业性强,可以加工出普通车床加工不了的曲线、曲面等复杂零件。加工精度高,尺寸分散度小,易于装配。可以实现多工序集中加工,提高了相关加工精度,同时减少被加工零件在机床间的频繁搬运。拥有自动补偿等功能,简化了传统机床加工工艺中的工序,机床利用率大幅度提高。由于采用自动化加工技术,可大大降低操作者的劳动强度,减少废品的产生,提高工作效率。另外其改造成本同购置新机床相比,节省的费用十分可观,国产数控机床价格也要48万元,进口机床有的近20万元,而对普通车床进行数控化改造也能满足实际生产要求,其改造费用仅23万元,非常符合我国国情。1.2 数控机床的发展趋势和研究方向随着科学技术的发展,世界先进制造技术的兴起和不断成熟,对数控加工技术提出了更高的要求,超高速切削、超精密加工等技术的应用,对数控机床的数控系统、伺服系统、主轴驱动、机床及结构等提出了更高的性能指标。随着FMS的迅速发展和CMS的不断成熟,又将对数控机床的可靠性、通讯功能、人工智能和自适应控制等技术提出了更高的要求。随着微电子计算机技术的发展,数控系统性能日益完善,数控技术应用领域日益扩大。当今数控机床正在不断采用最新技术成就,朝着高速度化、高精度化、多功能化、智能化、系统化与高可靠性等方向发展。1.2.1 高速度、高精度化速度和精度是数控机床的两个重要指标,它直接关系到加工效率和产品的质量,特别是在超高速切削、超精密加工技术的实施中,它对机床各坐标轴位移速度和定位精度提出了更高的要求:另外,这两项技术指标又是互相制约的,也就是说要求位移速度越高,定位精度就越难提高。现代数控机床配备了高性能的数控系统及伺服系统,分辨率可达到lum,0.lum, 0.0lum。为实现更高速度、更高精度的指标,自前主要在下述几方面采取措施和进行研究。(1)数控系统。采用位数、频率更高的微处理器,以提高系统的基本运算速度。目前己由8位CPU过渡到16位和32位CPU,并向64位CPU发展,频率已由原来的5MHz提高到16MHz, 20MHz和32MHzo同时也采用了超大规模的集成电路和多种微处理器结构,以提高系统的数据处理能力,即提高插补运算的速度和精度。(2) 伺服驱动系统。随着超高速切削、超精密加工等先进工艺的提出,使得在旋转伺服电动机加滚珠丝杠的传统机械进给机构已无法实现。为此采用直线电动机直接驱动机床工作台的零传动直线伺服进给方式,将极大地提高机床直线进给的各项伺服性能指标, 特别是高速度和动态响应特性是以往任何伺服机构无法比较的。(3) 前馈控制技术。过去的伺服系统是将位置指令值与所检测到的实际值比较,所得的差乘以位置环的增益,其积再作为速度指令去控制电动机。由于这种控制方式总是存在着位置跟踪滞后误差,即当进给速度为F时,其伺服系统的最终滞后位F/G,这使得在加工拐角及圆弧切削时加工精度恶化。所谓前馈控制,就是在原来的控制系统上加上速度指令的控制方式,这样将使位置跟踪滞后误差大大减小,以改善拐角切削加工精度。(4) 机床动、静摩擦的非线性补偿控制技术。机床动、静摩擦的非线性会导致机床爬行。除了在机械结构上采取措施降低静摩擦外,新型的数控伺服系统具有自动补偿机械系统动、静摩擦非线性的控制功能。(5) 伺服系统的速度环和位置环均采用软件控制。由于采用软件控制具有较高的柔性,适应不同类型的机床对不同精度及速度的要求,进行加、减速性能的调整,并能实现复杂的控制算法,以满足高性能控制的要求。(6) 采用高分辨率的位置检测装置。如高分辨率的脉冲编码器,内装微处理器组成的细分电路,使得分辨率大大提高。(7补偿技术得到发展和广泛应用。现代数控机床利用计算机控制系统的软件补偿功能对伺服系统进行多种补偿,以提高机床的位置精度和动态伺服性能,如轴向运动定点误差补偿、丝杠螺距误差补偿、齿轮间隙补偿、热变形补偿和空间误差补偿等。(8) 高速大功率电主轴的应用。由于在超高速加工中.对机床主轴转速提出了极高的要求,传统的齿轮变速主传动系统已不能适应其要求。为此,采用了所谓内装式电动机主轴,简称电主轴。它是采用主轴电动机与机床主轴合二为一的结构形式,即采用外壳电动机,将其空心转子直接套装在机床主轴上,带有冷却套的定子则安装在主轴单元的壳体内,即机床主轴单元的壳体就是电动机座。实现了变频电动机与机床主轴一体化,以适应主轴高速运转的要求。(9) 超高速切削刀具的应用。为适应超高速加工要求, 目前陶瓷刀具和金刚石涂层刀具已开始得到应用。(10) 配置高速、强功能的内装式可编程控制器(ProgrammableL ogicController,简称PLC)。以提高PLC的运行速度,满足数控机床高速加工的要求。新型的PLC具有专用的CPU,基本指令执行时间达0. 2us/步,可编程步数可扩大到16000步以上。利用PLC的高速处理功能,将CNC与PLC之间有机地结合起来,能够满足数控机床运行中的各种实时控制要求。1.2.2多功能化(1) 数控机床采用一机多能,提高了设备利用率。配有自动换刀机构的各类加工中心,能在同一台机床上同时实现铣削、锉削、钻削、车削、铰孔、扩孔、攻螺纹,甚至磨削等多种工序的加工。工件一经装夹,各种工序和工艺加工过程集中到同一台设备上完成,从而避免了工件多次装夹所造成的定位误差,确保零件的形位公差,减少装夹辅助时间,减少设备台数和占地面积。为了进一步提高工效,现代数控机床采用了多主轴、多面体切削,即同时对一个零件的不同部位进行不同方式的切削加工,如各类五面体加工中心。(2) 前台加工、后台编辑的前后台功能。现代数控系统采用了多CPU结构和分级中断控制方式,可以在一台机床上同时进行零件加工和程序编制,实现所谓的前台加工后台编辑.即操作者可在机床进入自动循环加工的空余期间,同时利用数控系统的键盘和CRT进行零件加工的编制,并利用CRT进行动态图形模拟显示及所编程序的加工轨迹,进行程序的调试和修改,以充分提高工作效益和机床利用率。(3) 具有更高的通信功能。为了适应FMC,F MS以及进一步联网组成CIMS的要求,一般的数控系统都具有RS-232C和RS-422高速远距离串行接口,可以按照用户级的格式要求,同上一级计算机进行多种数据交换。高档的数控系统应有的DNC接口,可以实现几台数控机床之间的数据通信,也可以直接对几台数控机床进行控制。现 代 数 控机床,为了适应自动化技术的进一步发展,满足工厂自动化规模越来越大的要求,满足不同厂家不同类型数控机床联网的需要,采用了MAP工业控制网络,现在已经实现了MAP3.0 版本,为现代数控机床进入FMS和C工MS创造了条件。1.2.3智能化(1) 引进自适应控制技术。自适应控制的目的是要求在随机变化的加工过程中,通过自动调节加工过程中所测得的工作状态、特性,按照给定的评价指标自动校正自身的工作参数,己达到或接近最佳工作状态。由于在实际加工过程中,大约有30余种变量直接和间接影响加工效果,如工件毛坯余量不匀、材料硬度不一致、刀具磨损、工件变形、机床热变形、化学亲和力的大小、切削液的粘度等,难以用最佳参数进行切削。而自适应控制系统则能根据切削条件的变化,自动调节工作参数,如伺服进给参数、切削用量等,使加工保持最佳工作状态,从而得到较高的加工精度和较小的表面粗糙度,同时也能提高刀具的使用寿命和设备的生产效率。(2) 故障自诊断、自修复功能。主要是利用CNC系统的内装程序实现在线诊断,即在整个工作状态中,系统随时对CNC系统本身以及与其相连的各种设备进行自动诊断、检查。一旦出现故障时,立即采用停机等措施,并通过了CRT进行故障报警、提示发生故障的部位、原因等。并利用冗余技术,自动使故障模块脱机,而接通备用模块,以确保在无人化工作环境的要求。为实现更高的故障诊断要求,最近又提出了人工智能专家诊断系统,它主要由知识库、推理机和人机控制器三部分组成。(3) 刀具寿命自动检测更换。利用红外、声发射、激光等各种检测手段,对刀具和工件进行监测。发现工件超差、刀具磨损、破损,进行及时报警、自动补偿或更换备用刀具,以保证产品质量。(4) 进行模式识别技术。应用图像识别和声控技术,使机器自己辨认图样,按照自然语音命令进行加工。1.2.4数控系统小型化数控系统体积小型化便于将机、电装置融合为一体。目前主要采用超大规模集成元件、多层印制电路板,采用三维安装方法,使电子元器件得以高密度的安装,可以较大的缩小了系统的占有空间。此外,用新型的TFT彩色液晶薄膜型显示器,代替传统的阴极射线管CRT,即可使数控操作系统进一步小型化。这样可更方便地将它安装在机床设备上,更便于对数控机床的操作使用。1.2.5数控编程自动化由于微处理机的应用,使数控编程从脱机编程发展到在线编程,实现了人机对话,给程序编辑、调试、修改带来了极大的方便。并进一步采用了前台加工后台编辑的前后台功能,使数控机床的利用率得到更大的发挥。随着计算机应用技术的发展,目前CAD被弹入图形交互式自动编程已得到应用,它是利用CAD绘制的零件加工图样,自动生成NC零件加工程序,实现CAD与CAM的集成。随着CIMS技术的发展,目前又出现了CAD/CAPP/CAM集成的全自动编程方式,它与CAD/CAM系统编程的最大区别是其编程所需的加工工艺参数不必有人工参与,直接从系统内的CAPP数据库获得。另外,还出现了测量、编程、加工一体化系统。它是通过激光快速扫描成型系统、三坐标测量机等对样机零件进行测量,并把所测得数据直接送入计算机内,一方面通过CAD系统而获得样机零件图样,另一方面通过数控自动编程系统,将其处理生成NC加工程序,然后通过通信接口送入数控机床,进行控制自动加工。1.2.6更高的可靠性数控机床工作的可靠性是用户最关注的主要指标,它主要取决于数控系统和各伺服驱动单元的可靠性,为提高可靠性,目前主要在以下几个方面采取措施。(1) 提高系统硬件质量.采用更高集成度的电路芯片,利用大规模和超大规模的专用机混合式集成电路,以减少元器件的数量,精简外部连线和降低功耗,对元器件进行严格筛选,采用高质量的多层印制电路板,实行三维高密度安装工艺,并经过必要的老化、振动等有关考机试验。(2) 模块化、标准化和通用化。通过硬件功能软件化,以适应各种控制功能的要求,同时采用硬件结构模块化、标准化和通用化,既提高了硬件生产批量,又便于组织生产和质量把关。(3) 增强故障自诊断、自恢复和保护功能。通过自动运行启动诊断、在线诊断、离线诊断等多种自诊断程序,实现对系统内硬件、软件和各种外部设备进行故障诊断和报警。利用报警提示,及时排除故障;利用容错技术,对重要部件采取冗余设计,以实现故障自恢复;利用各种测试、监控技术,当产生超程、刀损、干扰、断电等各种意外事件时,自动进行相应的保护。1.3 本课题研究的参数要求根据下列参数进行设计数控车床的横向进给机构,纵向进给机构和电路控制原理图规格加工最大直径加工最大长度溜板及刀架重力(N)刀架快移速度(m/min)最大进给速度(m/min)定位精度mm主电机功率KW启动加速时间ms纵向横向纵向横向纵向横向630630140012008002.01.00.50.250.0151035数控车改造成溜板及刀架重力、主电机功率分别按105%在原参数上乘以系数。第2章 总体设计方案2.1数控车床的总体任务横向和纵向进给系统设计计算:此部分为设计计算部分,用以确定脉冲当量,进给牵引力,选择丝杠螺母副,计算传动效率,确定传动比,选择伺服电机等,并绘制机床的横向和纵向的装配图及电路控制原理图。2.2运动系统方案确定2.2.1伺服系统的选择伺服系统分为开环控制系统、半闭环控制系统和闭环控制系统:开环控制系统中没有检测反馈装置,数控装置的控制指令直接通过驱动装置控制步进电机的运转,然后通过机械传动系统转化成刀架或工作台的位移。这种控制系统由于没有检测反馈校正,位移精度一般不高,但其控制方便、结构简单、价格便宜。闭环控制系统又称全闭环控制系统,其检测装置安装在机床刀架或工作台等执行部件上,用以直接检测这些执行部件的实际运行位置(直线位移),并将其与CNC装置的指令位置(或位移)相比较,用差值进行控制。但是,由于很多机械传动环节包含在闭环控制的环路中,各部件的摩擦性,刚性等都是非线性量,直接影响系统的调节参数,因此,闭环系统的设计和调速都有很大难度。所以,闭环控制系统主要用于精度要求高的场合。半闭环控制系统,它的检测元件装在电机或者丝杠的端头,通过测量伺服电机的角位移间接计算出机床工作台等执行部件的实际位置(或位移),然后进行反馈控制。由于将丝杠螺母副及机床工作台等大惯量环节排除在闭环控制系统之外,不能补偿他们的运动误差,精度受到影响,但系统稳定性有所提高,调试比较方便、价格也较全闭环系统便宜。本次改造由于使用步进电机,所以可以选择开环控制系统。2.2.2传动方式的选择为保证改造后的数控系统的传动精度及工作台的平稳性,在设计机床的传动系统时,应努力保证传动系统低摩擦、低惯量、高效率、高刚度。因此在传动系统中注意以下几点:(1) 用低摩擦高精度的传动元件:如滚珠丝杠螺母副,滚动导轨。(2) 采用消隙齿轮减小传动间隙。2.3数控系统电路原理图设计为了使数控系统能够长期、可靠、方便地在工业环镜中运行,在制定数控系统总体方案时必须重点考虑以下几个方面。(1) 加强系统可靠性。影响数控系统可靠性的因素很多,硬件规模和硬件的制造工艺水平往往是影响可靠性的关键因素。因此,应选用高性能的CPU作为系统的运算和控制核心,并尽量用软件来实现数控系统的功能。在系统的具体硬件构成上,选用可靠性高的工控PC作为数控系统硬件平台,减少自制硬件数量。此外,在软件设计、电源选用、接插件设计与选用、接地与屏蔽设计等方面采用强抗干扰、高可靠性的设计,从而全面提高系统的可靠性。(2) 提高数控系统的控制精度。数控系统的控制精度是保证机床加工精度的关键。因此,它在数控系统中处于重要位置。如提高数控系统的最小分辨率,使用高精度的步进电机,采用高速高精度插补算法,提高轨迹生成精度;增强位置环控制能力;增加补偿功能等。(3) 提高使用方便性。提高数控编程的方便性,是提高数控系统使用方便性的关键。因此,数控系统除提供全屏幕编辑进行手工编程外,还应该配置自动编程系统,从而大大提高数控编程的速度和智能化程度,大大方便普通用户的使用。另外,因为现代工人都比较熟悉个人计算机,数控系统在操作方面应采用标准计算机键盘或与其兼容的薄膜键盘等输入设备,也可用软盘、移动磁盘、串行通讯、网络系统等输入零件程序。此外,数控系统中应设置仿真功能,便于用户在加工前检查零件程序的正确性。2.4数控系统硬件结构系统由工控PC硬件平台、数控操作面板(包括LCD显示器,键盘)、数控接口板卡(工/0板,D/A板)和驱动执行机构等组成。PC硬件平台包括工控电源、无源母板、工控PC主板和软盘驱动器、硬盘驱动器等。数控操作面板上有液晶显示器和薄膜键盘等。数控接口板卡是计算机与外部执行装置间进行信息交换和转换的通道,对内通过无源母板与工控PC主板相连,对外通过屏蔽电缆与驱动执行装置相连接。该系统的驱动执行环节包括四个子系统:进给轴控制与驱动子系统;主轴控制与驱动子系统;开关量控制系统。主轴控制与驱动子系统的功能包括两方面:主轴转速的调速控制,以满足宽范围切削速度的要求;主轴转角的精确控制,以满足加工螺纹时的主轴与进给轴的联动控制和换刀时的主轴精确定位控制要求。开关量控制系统完成机床的逻辑顺序运动控制,如主轴起停控制、刀具交换、工件装夹、冷却开关、行程保护等任务。开关量控制系统与其它模块相配合,共同完成机床工作过程的控制。2.5数控系统软件结构数控系统软件为实时多任务系统,系统中的各任务在数控实时操作系统控制下协调进行。(1) 数控实时操作系统。它是数控系统软件中的核心子系统,它对系统中的资源进行统一管理,对各任务进行动态调度,协调各模块的高效运行,并辅助完成各任务间的通讯和信息交换。(2) 信息预处理。该模块完成输入信息译码,完成轨迹插补前的坐标转换和刀补运算。(3) 轨迹插补。它是数控系统的核心模块,其任务是根据信息预处理给出的希望轨迹和从检测装置获得的实际轨迹信息,实时生成机床各坐标轴的移动指令,并完成机床运动的加减速控制。(4) 运动控制。该模块是数控系统的另一核心模块,它根据插补运算结果,通过高速算法对机床各坐标轴进行高精度位置控制,并完成主轴转速与转角的控制任务。(5) 加工仿真模块。该模块以动画方式对数控加工过程进行动态仿真,从而在加工前检验参数输入正确性和机床运动合理性。第3章 纵坐标进给伺服进给结构设计3.1 确定脉冲当量一个进给脉冲,使机床运动部件产生位移量,也称为机床的最小设定单位。脉冲当量是衡量数控机床加工精度的一个基本技术参数。经济型数控车床铣床常采用的脉冲当量是0.010.005mm/脉冲。根据机床精度要求确定脉冲当量,纵向:0.01mm/脉冲,横向:0.005mm/脉冲。3.2 切削力的计算切削力是指在切屑过程中产生的作用在工件和刀具上的大小相等、方向相反的切削力,或通俗的讲是在切削加工时,工件材料抵抗刀具切削时产生的阻力。车削外圆时的切削力如图3-1所示。主切削力与切削速度的方向一致,垂直向下,是计算车床主轴电动机切削功率的依据;进给力与进给方向平行且方向相反;背向力与进给方向相垂直,对加工精度的影响较大。FzFxFy 图3-1 车削力分析由机床设计手册可知,切削功率 式中:主轴电动机功率, ; 主传动系统总效率,一般为0.750.85,取=0.85; 进给系统功率系数,一般取=0.96。则 切削功率应按在各种加工情况下经常遇到的最大切削力和最大切削速度来计算,即,式中切削速度v取100,则主切削力: =5088根据经验公式:=1:0.4:0.35,计算出: =50880.4=2035.2 =50880.35=1780.83.3滚珠丝杠螺母副的计算和选型 滚珠丝杠副的作用是将旋转运动转变为直线运动,其螺旋传动是在丝杠和螺母滚道之间放人适量的滚珠,使螺纹间产生滚动摩擦。丝杠转动时,带动滚珠沿螺纹滚道滚动。螺母上设有返向器,与螺纹滚道构成滚珠的循环通道。为了在滚珠与滚道之间形成无间隙甚至有过盈配合,可设置预紧装置。为延长工作寿命,可设置润滑件和密封件。3.3.1 精度的选择滚珠丝杠副的精度直接影响数控机床的定位精度,在滚珠丝杠精度参数中,其导程误差对机床定位精度最明显。一般在初步设计时设定丝杠的任意300行程变动量应小于目标设定定位精度值的1/31/2,在最后精度验算中确定。对于车床,选用滚珠丝杠的精度等级X轴为13级(1级精度最高),Z轴为25级,考虑到本设计的定位精度要求和改造的经济性,选择X轴精度等级为3级,Z轴为4级。3.3.2丝杠导程的确定 选择导程跟所需要的运动速度、系统等有关,通常在:4、5、6、8、10、12、20中选择,规格较大,导程一般也可选择较大(主要考虑承载牙厚)。在速度满足的情况下,一般选择较小导程(利于提高控制精度),本设计中初选纵向丝杠导程为8,横向丝杠导程为5。3.3.3 最大工作载荷的计算最大工作载荷是指滚珠丝杠螺母副在驱动工作台时所承受的最大轴向力,也叫进给牵引力,其实验计算公式如表3-1所示。表3-1 实验计算公式及参考系数导轨类型实验公式矩形导轨1.10.15燕尾导轨1.40.2综合或三角导轨1.150.15-0.18表中为考虑颠覆力矩影响时的实验系数;为滑动导轨摩擦系数;为移动部件总重量。G=1200N105%=1260 N查表3-1选择综合导轨,取1.15,取0.18,为1260;算得=1.151780.8+0.18(5088+1260) =2994.363.3.4 最大动载荷的计算载荷随时间急剧变化且使构件的速度有显著变化(系统产生惯性力),此类载荷为动载荷。比如起重机以等速度吊起重物,重物对吊索的作用为静载,起重机以加速度吊起重物,重物对吊索的作用为动载。对于滚珠丝杠螺母副的最大动载荷计算公式如下: 式中:滚珠丝杠副的寿命系数,单位为r,(T为使用寿命,普通机床T取5000-10000h,数控机床T取15000h;n为丝杠每分钟转速); 载荷系数,一般取1.21.5,本设计取1.2; 硬度系数(HRC58时取1.0;等于55时取1.11;等于52.5时取1.35;等于50时取1.56;等于45时取2.40); 滚珠丝杠副的最大工作载荷,单位为N。本设计中车床纵向承受最大切削力条件下最快的进给速度,初选丝杠基本导程,则丝杠转速。取滚珠丝杠使用寿命,带入得=90;取,代入,求得 :=17390N。3.3.5 滚珠丝杠螺母副的选型初选滚珠丝杆副时应使其额定动载荷, 当滚珠丝杠副在静态或低速状态下长时间承受工作载荷时,还应使额定静载荷。根据计算出的最大动载荷,选择江苏启东润泽机床附件有限公司生产的FL5008-3型内循环式滚珠丝杠副,采用双螺母螺纹式预紧,精度等级为4级,其参数如表3-2所示。表3-2 FL5008-3型滚珠丝杠相关参数公称直径/导程/钢球直径/丝杠外径/丝杠底径/额定载荷/接触刚度/ 18975084.76348.645.2466313.3.6 滚珠丝杠副的支承方式 滚珠丝杠副的支承主要用来约束丝杠的轴向窜动,为了提高轴向刚度,丝杠支承常用推力轴承为主的轴承组合。考虑到纵向丝杠长度较大,本设计纵向丝杠采用双推简支支承方式,该方式临界转速、压杆稳定性高,有热膨胀的余地。3.4.3 传动效率的计算滚珠丝杠的传动效率一般在0.80.9之间,其计算公式如下: =式中:螺距升角,根据,可得=291; 摩擦角,一般取=10。算得: =96.67%3.3.8 刚度的验算滚珠丝杠副工作时受轴向力和转矩的作用,引起导程的变化,从而影响定位精度和运动的平稳性。轴向变形主要包括丝杠的拉伸或压缩变形、丝杠与螺母间滚道的接触变形、支承滚珠丝杆的轴承的轴向接触变形。因转矩和丝杠-螺母滚道接触对丝杠产生的导程变化很小,所以、可以忽略不计,所以丝杠的拉伸或压缩变形量为:=(“+”号代表拉伸,“-”代表压缩)式中:丝杠的最大工作载荷,单位为; 丝杠纵向最大有效行程,单位为; 丝杠材料的弹性模量,钢; 丝杠的横截面面积,单位按丝杠螺纹的底径确定。根据前面的设计,为3234.36,取1665,为45.24,算得: =0.01597=15.97查表3-3可知,,所以刚度足够。表3-3 有效行程内的目标行程公差和行程变动量有效行程精度等级12345大于至31566881212161623234005008710915132019272616002000181325183525483665513.3.9 稳定性校核由于滚珠丝杠本身比较细长又受轴向力的作用,若轴向负载过大,则会产生失稳现象,不失稳时的临界载荷Fk应该满足: =式中:丝杠支承系数,双推-简支方式时,取2,其他方式如表3-4所示; 滚珠丝杠稳定安全系数,一般取2.54,垂直安装时取最小值,本设计取4; 滚珠丝杠两端支承间的距离,单位为,本设计中该值为2000;(其中工件加工长度为1400,取2000,留600的两端余量) 按丝杠底径确定的截面惯性矩(,单位为),本设中将代入算出=205513.36。 由以上数据可以算出:= 临界载荷远大于工作载荷(3234.36N),故丝杠不会失稳。表3-4 丝杠支承系数支承方式双推-双推双推-简支单推-单推双推-自由取值4210.253.3.10 临界转速的验证滚珠丝杠副高速运转时,需验算其是否会发生共振的最高转速,要求丝杠的最高转速: 式中:丝杠支承系数,双推-简支方式时,取值如表3-5所示;临界转速计算长度,单位为,本设计中该值为2300;丝杠内径,单位;安全系数,可取=0.8表3-5 丝杠支承系数支承方式双推-双推双推-简支单推-单推双推-自由取值27.418.912.14.3 经过计算,得出=1293,由已知,可以算出,该值小于丝杠临界转速,所以满足要求。3.4 齿轮传动的计算有关齿轮计算传动比故取; ; ; ; ; 3.5 步进电动机的选择(1)工作台质量折算到电机轴上的转动惯量丝杠的转动惯量 式中 滚珠丝杠的公称直径; 丝杠长度。则齿轮的转动惯量 电机的转动惯量很小可忽略。因此,总转动惯量 (2)所需转动力矩计算快速空载启动时所需力矩最大切削负载时所需力矩快速进给时所需力矩式中 空载启动时折算到电机轴上的加速度力矩;折算到电机轴上的摩擦力矩;由于丝杠预紧所引起,折算到电机轴上的附加摩擦力矩;切削时折算到电机轴上的加速度力矩;折算到电机轴上的切削负载力矩。 当时 当时 当时, 时 当时预加载荷,则 所以,快速空载启动所需力矩 切削时所需力矩 快速进给时所需力矩由上分析计算可知,所需最大力矩发生在快速启动时:(3)纵向进给系统步进电机的确定为了满足最小步距要求,电动机选用三相六拍工作方式,查表知所以,步进电机最大静转距为步进电机最高工作频率综合考虑,查表选用110BF003型直流步进电动机,能满足要求7-12。3.6导轨的特点滑动导轨的优点是结构简单、制造方便和抗振性良好;缺点是磨损快。为了提高耐磨性,国内外主要采用镶钢滑动导轨和塑料滑动导轨。 滑动导轨常用材料有铸铁、钢、有色金属和塑料等。1铸铁 铸铁有良好的耐磨性、抗振性和工艺性。常用铸铁的种类有:(1)灰铸铁 一般选择HT200,用于手工刮研、中等精度和运动速度较低的导轨,硬度在HB180以上; (2)孕育铸铁 把硅铝孕育剂加入铁水而得,耐磨性高于灰铸铁; (3)合金铸铁 包括:含磷量高于0.3的高磷铸铁,耐磨性高于孕育铸铁一倍以上;磷铜钛铸铁和钒钛铸铁,耐磨性高于孕育铸铁二倍以上;各种稀土合金铸铁,有很高的耐磨性和机械性能;铸铁导轨的热处理方法,通常有接触电阻淬火和中高频感应淬火。接触电阻淬火,淬硬层为0.150.2mm。硬度可达HRC55。中高频感应淬火, 淬硬层为23mm,硬度可达HRC4855,耐磨性可提高二倍,但在导轨全长上依次淬火易产生变形,全长上同时淬火需要相应的设备。2钢 镶钢导轨的耐磨性较铸铁可提高五倍以上。常用的钢有:9Mn2V、CrWMn、GCr15、T8A、45、40Cr等采用表面淬火或整体淬硬处理,硬度为5258HRC;20Cr、20CrMnTi、15等渗碳淬火,渗碳淬硬至5662HRC;38C rMoAlA等采用氮化处理。3有色金属 常用的有色金属有黄铜HPb59-l,锡青铜ZCuSn6Pb3Zn6,铝青铜ZQAl9-2和锌合金ZZn-Al10-5,超硬铝LC4、铸铝ZL106等,其中以铝青铜较好。4塑料 镶装塑料导轨具有耐磨性好(但略低于铝青铜),抗振性能好,工作温度适应范围广(-200+260),抗撕伤能力强,动、静摩擦系数低、差别小,可降低低速运动的临界速度,加工性和化学稳定件好,工艺简单,成本低等优点。目前在各类机床的动导轨及图形发生器工作台的导轨上都有应用。塑料导轨多与不淬火的铸铁导轨搭配。导轨的使用寿命取决于导轨的结构、材料、制造质量、热处理方法、以及使用与维护。提高导轨的耐磨性,使其在较长时期内保持一定的导向精度,就能延长设备的使用寿命。常用的提高导轨耐磨性的方法有:采用镶装导轨、提高导轨的精度与改善表面粗糙度、采用卸荷装置减小导轨单位面积上的压力(即比压)等。4.3 导轨的设计一作用力合作用点位置,作用力方向和作用点的位置唏嘘合理安置。一边导轨倾斜的力矩尽量小。否则会使导轨中的摩擦力增大,磨加剧,从而降低导轨的灵活性和导向精度。严重时甚至还可能卡死,不能正常工作。1. 作用在运动件上的推力有三种情况: 1.推力通过运动件在轴线2.推力作用点在运动件的轴线上。但推力的方向与轴线成一夹角3.推力平行于运动件的轴线上对于第一种情况,导轨镇南关的摩擦力只受到载荷及运动件本身重量的影响,推力不会产生附加摩擦力。犹豫结构上的限制,实际的结构中往往出项第二第三中情况。为了保证导轨的灵活性,要对导轨进行验算,在已知的条件先,确定各部分的集合尺寸。推力F与运动件轴线组成夹角a,如图所示推力F的作用将使运动件产生倾斜,从而使运动件与承导体的俩点处压紧, 设正压力分别为 .,相应摩擦力,作用间的距离为L,轴向阻力为 根据静力平衡条件,运动件的直径较小时,上式中含有d的各项可以略去。可解得:欲推动运动件,则必须使若要保证不卡死的条件是: 由此,可得到当推力F与运动件有一夹角a时,运动件正常工作的条件是 为当量摩擦系数在燕尾形和三角形导轨中:-滑动摩擦系数-眼尾轮廓角与三角底角二选与运动件轴线与轴线相距h,图中为轴向阻力和为反作用力,为当量摩擦系数,根据静力平衡条件解得:推动运动件则必须:保证运动件不卡死条件即:为了保证运动灵活,可取值当取f=0.25时,则有:对圆柱形导轨:对矩形导轨:对燕尾形或三角形导轨:在本设计的导轨中:h=200mm L=360 因此:符合相关要求.3.8 导轨贴塑工艺及其加工贴塑导轨“其精度高、加工灵活方便,使用寿命长和经济等特点,而在当代各类数控机床设计制造中取得了益广泛的应用。目前,导轨贴塑工艺在国内尚处初级应用阶段.一3.8.1 贴塑原料的选择1.塑科软带的选择塑料软带由聚四氟乙烯加青铜粉及其它添加剂组成。为了增加塑料软带的粘结接性,在软带的一个或两个表面进行了化学处理,颜色为棕黑色。选择塑料软带时要注意选择无明显气泡和裂纹的软带。2.粘结剂的选择与配制机床导轨粘结采用结构胶,如聚氨酯、212,502和新光101等粘结剂。但在油及冷却液的场台下则以近择环氧树脂型胶为好。目前, 国内外对提高粘接剂性能作了大量研究,在使用粘结剂时,要注意使用温度及时间。台理的使用温度为1035C。为了由快粘结剂的干化时间,可在粘接荆中加入适量硬化刺,一般硬化剂比例控制在40 50% 。加入硬化剂后,粘接剂要充分搅拌均匀。应注意两种成分一经祝合,粘接剂的使用时间一般就只有05l h (小时).3.8.2 金属粘接面的预加工为了提高粘结强度, 应对金属特粘接进行台理的加工,粘接面的表面粗糙度应为R6332表面粗糙度过高或过低均影响粘接强度。为了保证软带在使甩中不受意外的剪切力阳剥离力,并易于在贴塑时蹲轼带定位,贴塑导轨应设计出凹槽(图1),其R寸要保证塑料较带在贴后有足够的加工余量3.8.3 贴塑工艺1环境要求贴塑环境状态会直接影响贴塑效果, 因此, 贴塑工作场所应选择在通风,干净的室内,环境温度不低于10 C。2工件清洗在贴塑前应对工件加El清洗,一般可用丙酮,叠氯乙烯等瞎荆。如对旧导轨进行贴塑改造,可用火焰枪将表面油脂去脒后再用丙酮垒氯乙烯清洗。清洗时可甩白软布,但不可用易掉毛的棉丝或毛尉。酒精,汽油与煤油等不能作为最后的清洗剂用。金属粘接面及塑料软带粘接面清洗后,应用白软布或自纸检查是否有残留污物3贴塑先将配制好的粘接剂用周2所示的刹板在相互垂直的两十方向上,分别涂抹在金属粘接面和塑料软带粘接面上。涂抹完粘结剂后,可按图3所示,从一端逐步将塑料软带贴在金属粘接面上。为防止加压时特模,应在软带上铺一层防油纸或描图纸 太小可根据贴塑面的尺寸而定。4加压及硬化加压办法较多,可采用导轨应施压、重物施压或专用夹其施压 压力控制在0051 MPa。加压方法如图4所示。加压后就不能再改变压力的太小,通常温度在25。C时,硬化时间为24 h (小时)5脱模与修整在受压后,多余的牯接剂会从界面上挤出在外部硬化,因此应在垒郊硬化前修掉, 同时将软带边缘倒成45。 以防装配或机加工时剥落。贴塑后脱模对阅为硬化时间的23左右。3.8.4 塑料面的机械加工一般来说,对导轨的精度无具体要求时,可不对塑料面加工。如对导轨有几何精度要求,则应对塑料软带面进行严格的加工。塑料软带的加工性较好,一般均可采甩常规工艺, 但以唐削、铙削加工效果最好1磨削加工磨削时注意磨削深度不得超过0.1mm,要选用组织疏松的砂轮,冷却要充分。2铣削 -为了在加工时不产生带刀现象, 以免刮伤塑料面, 铣刀应进行严格的刃磨。要求前角 =45。,后角 =30 ,刃部表面粗糙度不高于0。4推荐的铣削切削用量为铣削速度-大于100mmin进给量-0050.08mr吃刀深度_小于005ram。3油槽设计对油槽设计形式投有跟制,但离导轨边缘不得小于6 mm。商对注意油槽的深度不应穿透塑料软带。3.8.5 配置面的加工对配置面的加工要求与营通导轨相同, 表面硬度可略低一些I配置面硬度要求灰铸铣:大于HRC 25 钢:大于HRC452配置面自加工要求表面粗糙度R 04,一般采用磨削方法,不应使用抛光方法,周为低粗糙度会引起真空吸附作用, 太粗糙又会使塑料软带磨损较大。3.8.6检查在有条件的单位: 可用超声波进行检查查, 在无条件的单位,可以用肉眼从外观检查,如有无过多气泡, 滑位是否超过允许范围,周边有无粘结不牢之处, 是否有缺胶,严重划伤等。如果有 则需揭掉重新粘合。对于一些无法加工的部位孺由钳工修整,修整后用红丹粉检查点子。如果点子不明显,可用百分表进行局部检查。第4章 横坐标进给伺服进给结构设计4.1切削力的计算因为横向切削力大小一般等于纵向切削力的一半,所以: =2035.22=1017.6 =1780.82=890.4式中:横向主切削力; 走刀方向切削力; 吃刀方向切削力。4.2 滚珠丝杠螺母副的计算和选型4.2.1 最大工作载荷的计算已知溜板及刀架重力(N),横向为燕尾导轨,查表3-1,最大工作载荷的计算如下: =式中: 为考虑颠覆力矩影响时的实验系数,取1.4; 为滑动导轨摩擦系数,取0.2。4.2.2 最大动载荷的计算 式中:滚珠丝杠副的寿命系数,单位为r; 丝杠寿命,取15000; 载荷系数,一般取1.2; 硬度系数取1; 横向丝杠副最大工作载荷,其值为2459.6; 横向滚珠丝杠导程,初选为。 横向最大工进速度,该设计值为; 横向最大工进速度对应丝杠的转度,单位。计算得出得 :=12278.8。4.2.3滚珠丝杠螺母副的选型根据计算出的最大动载荷,选择江苏启东润泽机床附件有限公司生产的FL4005-3型内循环式滚珠丝杠副,采用双螺母方式预紧,精度等级为3级,其参数如表4-1所示。表4-1 FL4005-3型滚珠丝杠相关参数公称直径/导程/钢球直径/丝杠外径/丝杠底径/额定载荷/接触刚度/14534053.53936.532.8144.2.4 滚珠丝杠副的支承方式 考虑到横向滚珠丝杠副的长度、精度与负载的大小以及改造成本,采用双推-单推支承方式,该方式轴向刚度高,位移精度好,可以进行预拉伸。4.2.5 传动效率的计算 =式中:螺距升角,根据,可得=228; 摩擦角,一般取=10。算得: =95.67%4.2.6 刚度的验算=(“+”号代表拉伸,“-”代表压缩)式中:丝杠的最大工作载荷,单位为; 丝杠纵向最大有效行程,单位为; 丝杠材料的弹性模量,钢; 丝杠的横截面面积,单位按丝杠螺纹的底径确定。根据设计,为2459.6N,为420,为36.5,算得: =0.0047 =4.7查表3-3可知,,所以刚度足够。4.2.7 稳定性校核 =式中:丝杠支承系数,由表3-4得出单推-单推时,取1; 滚珠丝杠稳定安全系数,一般取2.54,本设计取4; 滚珠丝杠两端支承间的距离,单位为,本设计中该值为500; 按丝杠底径确定的截面惯性矩,(,单位为)本设中将代入算出=87080。 由以上数据可以算出:= 临界载荷远大于工作载荷(2459.6N),故丝杠不会失稳。4.2.8临界转速的验证 式中:丝杠支承系数,单推-单推方式时,由表3-5可得该值为12.1;临界转速计算长度,单位为,本设计中该值约为720;丝杠内径,单位;安全系数,可取=0.8经过计算,得出=5321,由已知,可以算出,该值小于丝杠临界转速,所以满足要求。4.3 进给伺服系统传动计算4.3.1确定传动比确定当机床脉冲当量和滚珠丝杠导程确定以后,可以先初选步进电机的步距角,计算伺服系统的降速比I选步进电机的步距角=0.6横向:4.3.2齿轮参数的计算摸数m取2。计算如下:横向:取小圆齿数为24小齿轮: 大齿轮:4.4.步进电机的计算和选用4.4.1转动惯量的计算(1)齿轮、轴、丝杠等圆柱体惯量计算() 对于钢材: 式中:M圆柱体质量()D圆柱体直径()L圆柱体长度()钢材的密度对于齿轮:D可取分度圆直径,L取齿轮宽度; 对于丝杠:D可近似取丝杠公称直径滚珠直径,L取丝杠长度。具体计算如下:纵向:横向:(2)丝杠传动时折算到电机轴上的总传动惯量步进电机经一对齿轮降速后传到丝杠,此传动系统折算到电机轴上的转动惯量为:式中:具体计算如下:纵向:横向:4.4.2电机力矩的计算电机的负载力矩在各种工况下是不同的,下面分快速空载起动时所需力矩、快速进给时所需力矩、最大切削负载时所需力矩等几部分介绍其计算方法。(1) 快速空载起动时所需力矩式中:(2) 快速进给时所需力矩因此对运动部件已起动,固不包含,显然。(3)最大切削负载时所需力矩式中:在采用丝杠螺母副传动时,上述各种力矩可用下式计算式中:摩擦力矩 式中:附加摩擦力矩 式中:折算到电机轴上的切削负载力矩式中:具体计算:横向: 4.5步进电机的选择目前,经济型数控车床中大多数采用反应式步进电机。1. 首先根据最大静转距从表中查出,当步进电机为三相六拍时, 纵向:按此最大静转矩产步进电机型号表(三相)可查出,110BYG3500型最大静转矩转矩为8N.m,大于所需静转矩,可作为初选型号。但必须进一步考核步进电机起动矩频特性和运行矩频特性。步进电机起动频率 Hz最高工作频率 Hz从电机表中查出,110BYG3500型步进电机的空载起动频率为1600Hz,运行频率为30000Hz,满足要求。横向:按此最大静转矩产步进电机型号表(三相)可查出,90BYGH3502型最大静转矩转矩为5N.m,大于所需静转矩,可作为初选型号。但必须进一步考核步进电机起动矩频特性和运行矩频特性。第5章 微机控制应用系统电路设计数控系统是数控机床的“大脑”,其设计也是数控机床的核心工程,对机床而言,数控系统通过对输入的加工程序进行数据处理和运算后,输出控制信号,控制主轴、进给轴和其他辅助装置正确、及时和可靠地执行加工程序所规定的任务,同时接受从机床反馈来的各种信息,对机床控制进行调整。任何一个数控系统都由硬件
展开阅读全文