java大学设备管理系统计算机毕业设计英文文献翻译

上传人:门**** 文档编号:60381386 上传时间:2022-03-07 格式:DOC 页数:21 大小:273KB
返回 下载 相关 举报
java大学设备管理系统计算机毕业设计英文文献翻译_第1页
第1页 / 共21页
java大学设备管理系统计算机毕业设计英文文献翻译_第2页
第2页 / 共21页
java大学设备管理系统计算机毕业设计英文文献翻译_第3页
第3页 / 共21页
点击查看更多>>
资源描述
毕业设计说明书英文文献及中文翻译班 级:学号:姓 名: 学 院: 软件学院 专 业: 软件工程 指导教师: 2014 年 6 月An Overview of Servlet and JSP Technology Nagle and Wiegley,Aug. 2008,953 958.Abstract: Servlet program running in the server-side, dynamically generated Web page with the traditional CGI and many other similar compared to CGI technology, Java Servlet with a more efficient, easier to use, more powerful and has better portability, more savings to invest .Key words: JSP Technology, Servlet, HTTP server1.1 A Servlets JobServlets are Java programs that run on Web or application servers, acting as a middle layer between requests coming from Web browsers or other HTTP clients and databases or applications on the HTTP server. Their job is to perform the following tasks, as illustrated in Figure 1-1.Figure 1-11Read the explicit data sent by the client.The end user normally enters this data in an HTML form on a Web page. However, the data could also come from an applet or a custom HTTP client program.2Read the implicit HTTP request data sent by the browser.Figure 1-1 shows a single arrow going from the client to the Web server (the layer where servlets and JSP execute), but there are really two varieties of data: the explicit data that the end user enters in a form and the behind-the-scenes HTTP information. Both varieties are critical. The HTTP information includes cookies, information about media types and compression schemes the browser understands, and so on.3Generate the results.This process may require talking to a database, executing an RMI or EJB call, invoking a Web service, or computing the response directly. Your real data may be in a relational database. Fine. But your database probably doesnt speak HTTP or return results in HTML, so the Web browser cant talk directly to the database. Even if it could, for security reasons, you probably would not want it to. The same argument applies to most other applications.You need the Web middle layer to extract the resultsinside a document.4Send the explicit data (i.e., the document) to the client.This document can be sent in a variety of formats, including text (HTML or XML), binary (GIF images), or even a compressed format like gzip that is layered on top of some other underlying format. But, HTML is by far the most common format, so an important servlet/JSP task is to wrap the results inside of HTML.5Send the implicit HTTP response data.Figure 1-1 shows a single arrow going from the Web middle layer (the servlet or JSP page) to the client. But, there are really two varieties of data sent: the document itself and the behind-the-scenes HTTP information. Again, both varieties are critical to effective development. Sending HTTP response data involves telling the browser or other client what type of document is being returned (e.g., HTML), setting cookies and caching parameters, and other such tasks. 1.2 Why Build Web Pages Dynamically?many client requests can be satisfied by prebuilt documents, and the server would handle these requests without invoking servlets. In many cases, however, a static result is not sufficient, and a page needs to be generated for each request. There are a number of reasons why Web pages need to be built on-the-fly:1 The Web page is based on data sent by the client.For instance, the results page from search engines and order-confirmation pages at online stores are specific to particular user requests. You dont know what to display until you read the data that the user submits. Just remember that the user submits two kinds of data: explicit (i.e., HTML form data) and implicit (i.e., HTTP request headers). Either kind of input can be used to build the output page. In particular, it is quite common to build a user-specific page based on a cookie value.2The Web page is derived from data that changes frequently.If the page changes for every request, then you certainly need to build the response at request time. If it changes only periodically, however, you could do it two ways: you could periodically build a new Web page on the server (independently of client requests), or you could wait and only build the page when the user requests it. The right approach depends on the situation, but sometimes it is more convenient to do the latter: wait for the user request. For example, a weather report or news headlines site might build the pages dynamically, perhaps returning a previously built page if that page is still up to date.3The Web page uses information from corporate databases or other server-side sources.If the information is in a database, you need server-side processing even if the client is using dynamic Web content such as an applet. Imagine using an applet by itself for a search engine site:Downloading 50 terabyte applet, please wait! Obviously, that is silly; you need to talk to the database. Going from the client to the Web tier to the database (a three-tier approach) instead of from an applet directly to a database (a two-tier approach) provides increased flexibility and security with little or no performance penalty. After all, the database call is usually the rate-limiting step, so going through the Web server does not slow things down. In fact, a three-tier approach is often faster because the middle tier can perform caching and connection pooling.In principle, servlets are not restricted to Web or application servers that handle HTTP requests but can be used for other types of servers as well. For example, servlets could be embedded in FTP or mail servers to extend their functionality. And, a servlet API for SIP (Session Initiation Protocol) servers was recently standardized (see http:/jcp.org/en/jsr/detail?id=116). In practice, however, this use of servlets has not caught on, and well only be discussing HTTP servlets.1.3 The Advantages of Servlets Over Traditional CGIJava servlets are more efficient, easier to use, more powerful, more portable, safer, and cheaper than traditional CGI and many alternative CGI-like technologies.1EfficientWith traditional CGI, a new process is started for each HTTP request. If the CGI program itself is relatively short, the overhead of starting the process can dominate the execution time. With servlets, the Java virtual machine stays running and handles each request with a lightweight Java thread, not a heavyweight operating system process. Similarly, in traditional CGI, if there are N requests to the same CGI program, the code for the CGI program is loaded into memory N times. With servlets, however, there would be N threads, but only a single copy of the servlet class would be loaded. This approach reduces server memory requirements and saves time by instantiating fewer objects. Finally, when a CGI program finishes handling a request, the program terminates. This approach makes it difficult to cache computations, keep database connections open, and perform other optimizations that rely on persistent data. Servlets, however, remain in memory even after they complete a response, so it is straightforward to store arbitrarily complex data between client requests.2ConvenientServlets have an extensive infrastructure for automatically parsing and decoding HTML form data, reading and setting HTTP headers, handling cookies, tracking sessions, and many other such high-level utilities. In CGI, you have to do much of this yourself. Besides, if you already know the Java programming language, why learn Perl too? Youre already convinced that Java technology makes for more reliable and reusable code than does Visual Basic, VBScript, or C+. Why go back to those languages for server-side programming?3PowerfulServlets support several capabilities that are difficult or impossible to accomplish with regular CGI. Servlets can talk directly to the Web server, whereas regular CGI programs cannot, at least not without using a server-specific API. Communicating with the Web server makes it easier to translate relative URLs into concrete path names, for instance. Multiple servlets can also share data, making it easy to implement database connection pooling and similar resource-sharing optimizations. Servlets can also maintain information from request to request, simplifying techniques like session tracking and caching of previous computations.4PortableServlets are written in the Java programming language and follow a standard API. Servlets are supported directly or by a plugin on virtually every major Web server. Consequently, servlets written for, say, Macromedia JRun can run virtually unchanged on Apache Tomcat, Microsoft Internet Information Server (with a separate plugin), IBM WebSphere, iPlanet Enterprise Server, Oracle9i AS, or StarNine WebStar. They are part of the Java 2 Platform, Enterprise Edition (J2EE; see so industry support for servlets is becoming even more pervasive.5InexpensiveA number of free or very inexpensive Web servers are good for development use or deployment of low- or medium-volume Web sites. Thus, with servlets and JSP you can start with a free or inexpensive server and migrate to more expensive servers with high-performance capabilities or advanced administration utilities only after your project meets initial success. This is in contrast to many of the other CGI alternatives, which require a significant initial investment for the purchase of a proprietary package.Price and portability are somewhat connected. For example, Marty tries to keep track of the countries of readers that send him questions by email. India was near the top of the list, probably #2 behind the U.S. Marty also taught one of his JSP and servlet training courses (see in Manila, and there was great interest in servlet and JSP technology there.Now, why are India and the Philippines both so interested? We surmise that the answer is twofold. First, both countries have large pools of well-educated software developers. Second, both countries have (or had, at that time) highly unfavorable currency exchange rates against the U.S. dollar. So, buying a special-purpose Web server from a U.S. company consumed a large part of early project funds.But, with servlets and JSP, they could start with a free server: Apache Tomcat (either standalone, embedded in the regular Apache Web server, or embedded in Microsoft IIS). Once the project starts to become successful, they could move to a server like Caucho Resin that had higher performance and easier administration but that is not free. But none of their servlets or JSP pages have to be rewritten. If their project becomes even larger, they might want to move to a distributed (clustered) environment. No problem: they could move to Macromedia JRun Professional, which supports distributed applications (Web farms). Again, none of their servlets or JSP pages have to be rewritten. If the project becomes quite large and complex, they might want to use Enterprise JavaBeans (EJB) to encapsulate their business logic. So, they might switch to BEA WebLogic or Oracle9i AS. Again, none of their servlets or JSP pages have to be rewritten. Finally, if their project becomes even bigger, they might move it off of their Linux box and onto an IBM mainframe running IBM WebSphere. But once again, none of their servlets or JSP pages have to be rewritten.6SecureOne of the main sources of vulnerabilities in traditional CGI stems from the fact that the programs are often executed by general-purpose operating system shells. So, the CGI programmer must be careful to filter out characters such as backquotes and semicolons that are treated specially by the shell. Implementing this precaution is harder than one might think, and weaknesses stemming from this problem are constantly being uncovered in widely used CGI libraries.A second source of problems is the fact that some CGI programs are processed by languages that do not automatically check array or string bounds. For example, in C and C+ it is perfectly legal to allocate a 100-element array and then write into the 999th element, which is really some random part of program memory. So, programmers who forget to perform this check open up their system to deliberate or accidental buffer overflow attacks.Servlets suffer from neither of these problems. Even if a servlet executes a system call (e.g., with Runtime.exec or JNI) to invoke a program on the local operating system, it does not use a shell to do so. And, of course, array bounds checking and other memory protection features are a central part of the Java programming language.7MainstreamThere are a lot of good technologies out there. But if vendors dont support them and developers dont know how to use them, what good are they? Servlet and JSP technology is supported by servers from Apache, Oracle, IBM, Sybase, BEA, Macromedia, Caucho, Sun/iPlanet, New Atlanta, ATG, Fujitsu, Lutris, Silverstream, the World Wide Web Consortium (W3C), and many others. Several low-cost plugins add support to Microsoft IIS and Zeus as well. They run on Windows, Unix/Linux, MacOS, VMS, and IBM mainframe operating systems. They are the single most popular application of the Java programming language. They are arguably the most popular choice for developing medium to large Web applications. They are used by the airline industry (most United Airlines and Delta Airlines Web sites), e-commerce (), online banking (First USA Bank, Banco Popular de Puerto Rico), Web search engines/portals (), large financial sites (American Century Investments), and hundreds of other sites that you visit every day.Of course, popularity alone is no proof of good technology. Numerous counter-examples abound. But our point is that you are not experimenting with a new and unproven technology when you work with server-side Java.Before diving into an explanation of presentation technology, its helpful to fill in some details on the situation that led to the birth of the technology. Just 10 short years ago, the term thin client was a novelty. We still lived in a world of desktop applications, powered by wimpy 286 microprocessors with 14-inch monitors that we squinted at. Boy, have times changed! Now my desktop does nothing but power a Web browser, while servers from Sun, IBM, HP, Compaq, and the rest churn out computations, business logic, and content. And that little monitor? Replaced by flat-screen, plasma, whopping 21- and 25-inch beauties. Why? So we can see the intricate and complex HTML displays that serve as a front-end to these powerful applications. No longer does a clunky interface suffice; now we expect flashy graphics, moving images, color-coordinated presentations that would look good in any room in the house, and speedy rendering to boot.The premiseToday, a decade beyond those fledgling Windows applications, we are still dealing with this huge shift in the presentation paradigm. The woeful Visual Basic and C programmers who remain now find themselves working either on back-end systems or Windows-only applications, or they have added a Web-capable language such as the Java language to their toolbox. An application that doesnt support at least three of four ML-isms - such as HTML, XML, and WML - is considered shabby, if not an outright failure. And, of course, that means we all care very deeply about the ability to easily develop a Web presentation layer.As it turns out, using the new Internet, and all the languages we have at our disposal - Java, C, Perl, Pascal, and Ada, among others - hasnt been as easy as we might have hoped. A number of issues creep up when it comes to taking the programming languages everyone used for back-end systems and leveraging them to generate markup language suitable for a client. With the arrival of more options on the browser (DHTML and JavaScript coding, for example), the increase in graphic artist talent in the Web domain, and tools that could create complex interfaces using standard HTML, the demand for fancy user interfaces has grown faster than our ability to develop these front ends to our applications. And this has given rise to presentation technology.Presentation technology was designed to perform a single task: convert content, namely data without display details, into presentation - meaning the various user interfaces you see on your phone, PalmPilot, or Web browser. What are the problems that these presentation technologies claimed to solve? Lets take a look.Work vs. reworkBesides the separation of content and presentation, another measure of a presentation technologys usefulness is the amount of rework that it eliminates. The divergence of presentation and content enforces a divergence in the roles of those developing the content. A programmer can focus on the raw content presented in the examples above, and a graphic artist or webmaster can attend to the presentation. A slight overlap of roles remains, however, in the process of taking the presentation - or markup - designed by the artist and applying it to the content the programmers code delivers.In the simplest case, the artist supplies the markup, and the developer provides code and also plugs the markup into the presentation technology. The application is started up, and the content magically becomes a user interface. Of course, as we all know, development rarely ends there. Next come revisions and changes to the interface and new business rules that must be coded. This is where the true test of the presentation technologys flexibility comes into play. While it is usually simple to update the raw content being fed into the presentation layer, rarely can the graphic artists easily edit their original work. Changes to the presentation layer are common (weve all been victim to marketing departments changing this or that). So now a problem arises: what do the designers change to tweak their work? The original markup language page they gave to the developer? Probably not, as that page has most likely had custom tags or code inserted (JSPpages, template engines), converted to a Java servlet, or changed into something totally unrecognizable.Often the designer must rework the original page and resubmit this page to the developer. Then the developer has to reconvert this page to the specific format needed for use in the presentation technology. Alternatively, the designer has to learn a scripting language or at least know that which areas of the pages source code from the developer are off limits. Of course, this is an error-prone, dangerous way to operate. Once youve determined that a presentation technology allows a clean split between content and presentation, you should try to ensure that a minimum amount of rework is necessary in order to make presentation changes.The promise of JSP technologyNow, on to the specifics of JSP coding. The promise of JSP technology is to supply the designer and developer the only presentation technology they will ever need. JSP technology is part of the J2EE platform, which is the strongest show of support Sun can give one of its Java products. To give you an idea of how prevalent this solution is, try running a search on JSP .youll find more books devoted to JSP technology than about almost any other single Java API. Before I dive into the specific problems that JSP technology presents, you need a clear understanding of what it claims to do.Content vs. presentationAbove all, JSP technology is about separating content from presentation, foremost in Suns published set of goals for JSP pages. In fact, JSP design stemmed directly from the complaints of developers who were tired of typing into their servlet code. This mixing of hard-coded content with runtime variables presented a horrible burden on ser
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 营销创新


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!