基于单片机的步进电机控制系统设计(共43页)

上传人:3626209****147198... 文档编号:55250580 上传时间:2022-02-17 格式:DOC 页数:44 大小:513.50KB
返回 下载 相关 举报
基于单片机的步进电机控制系统设计(共43页)_第1页
第1页 / 共44页
基于单片机的步进电机控制系统设计(共43页)_第2页
第2页 / 共44页
基于单片机的步进电机控制系统设计(共43页)_第3页
第3页 / 共44页
点击查看更多>>
资源描述
精选优质文档-倾情为你奉上2013届 分 类 号:TM383.6 单位代码:10452 毕业论文(设计)基于单片机的步进电机控制系统设计姓 名 学 号 年 级 专 业电气工程及其自动化 系(院) 汽车学院 指导教师 2013年 4月 26日专心-专注-专业摘 要步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。步进电机的调速一般是改变输入步进电机的脉冲的频率来实现步进电机的调速,因为步进电机每给一个脉冲就转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电机的调速。在本设计方案中采用AT89C51型单片机内部的定时器改变CP脉冲的频率从而实现对步进电机的转速进行控制,实现电机调速与正反转的功能。关键词:单片机;步进电机;调速系统 AbstractStep-by-step electric motor is the ring opening gating element changing electricity pulse signal into angular displacement or line displacement. Under the situation of must overload, the electric motor rotation rate , discontinuous location depend on pulse signal frequency and pulse number only , make free from being loaded with the effect changing ,but be that being added a pulse signal , the electric motor by electric motor is to have rotated a step spur angle. This gleam of the sexual relationships existence, adds step-by-step electric motor characteristics such as only having the cyclicity error but there being no accumulative error. Feasible simplicity controlling a field using step-by-step electric motor to come to control changeable extraordinary in speed , location etc. Step-by-step electric motor speed regulation general be change import step-by-step electric motor pulse frequency come true step-by-step electric motor speed regulation, because of step-by-step electric motor every be given to a pulse right away rotate one fixed angle, such right away not bad pass under the control of step-by-step electric motor a pulse arrive at next pulse period come to change pulse frequency,Come to control the speed regulation , realizing step-by-step electric motor thereby to come to change the electric motor rotation rate step-by-step angle concretely the deferred length. Frequency adopt the internal timer of AT89C51 type monolithic machine to change CP pulse in the design plan in realizes the speed regulation controlling , realizing an electric motor and the function that the positive and negative rotates being in progress to step-by-step electric motor rotation rate thereby. Keywords:Step-by-step electric motor; Monolithic machine; Speed regulation system目录1绪论步进电机最早是在1920年由英国人所开发。1950年后期晶体管的发明也逐渐应用在步进电机上,这对于数字化的控制变得更为容易。以后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解性能、高响应性、信赖性等灵活控制性高的机械系统中。在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是将电脉冲信号变换成角位移或直线位移的执行部件。步进电机可以直接用数字信号驱动,使用非常方便。一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入时步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。因此非常适合于单片机控制。步进电机还具有快速启动、精确步进和定位等特点,因而在数控机床,绘图仪,打印机以及光学仪器中得到广泛的应用。步进电动机已成为除直流电动机和交流电动机以外的第三类电动机。传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。2步进电机概述2.1步进电机的特点1)一般步进电机的精度为步进角的3-5%, 且不积累。2)步进电机外表允许的温度高。步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点:一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。3)步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。4)步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频。2.2步进电机的工作原理 步进电机是一种用电脉冲进行控制,将电脉冲信号转换成相位移的电机,其机械位移和转速分别与输入电机绕组的脉冲个数和脉冲频率成正比,每一个脉冲信号可使步进电机旋转一个固定的角度。脉冲的数量决定了旋转的总角度,脉冲的频率决定了电机运转的速度。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。2.3步进电机的技术参数 2.3.1步进电机的静态指标术语:1)相数:产生不同对N、S磁场的激磁线圈对数。常用m表示。2)拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A。3)步距角:对应一个脉冲信号,电机转子转过的角位移用表示。=360度/(转子齿数*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为=360度/(50*8)=0.9度(俗称半步)。4)定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)5)静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过分采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。2.3.2步进电机动态指标及术语:1)步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。 2)失步:电机运转时运转的步数,不等于理论上的步数。3)失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。4)最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。5)最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。6)运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。 要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。7) 电机的共振点:步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。 8)电机正反转控制:当电机绕组通电时序为A-AB-B-BC-C-CD-D-DA时为正转,通电时序为DA-D-CD-C-BC-B-AB-A时为反转。2.4步进电机的分类步进电机分为三大类:1)反应式步进电机:反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。它的结构简单,成本距角可以做得很小,但动态性能较差。反应式步进电机有单段式和多段式两种类型。 2)永磁式步进电机:永磁式步进电机的转子是用永磁材料制成的,转子本身就是一个磁源。转子的极数和定子的极数相同,所以一般步进角比较大,它输出转矩大,动态性能好,消耗功率小(相比反应式),但启动运行频率较低,还需要正负脉冲供电。 3)混合式步进电机:混合式步进电机综合了反应式和永磁式两者的优点。混合式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低 。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪声低、低频振动小。这种电动机最初是作为一种低速驱动用的交流同步机设计的,后来发现如果各相绕组通以脉冲电流,这种电动机也能做步进增量运动。由于能够开环运行以及控制系统比较简单,因此这种电机在工业领域中得到广泛应用。2.5步进电机的内外结构 步进电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3、2/3,(相邻两转子齿轴线间的距离为齿距以表示),即A与齿1相对齐,B与齿2向右错开1/3,C与齿3向右错开2/3,A与齿5相对齐,(A就是A,齿5就是齿1)下面是定转子的展开如2.1图所示:2.1定子展开图 电动机定子铁心和一般电机一样由硅钢片叠成,铁心内孔表面有开口槽。转子装有一个轴向磁化永磁体用以产生一个单向磁场。永磁体产生的磁通,在每一个气隙圆周上都是单方向通过气隙的,这时作用在气隙中的磁势是同极性的,称为单极磁势。而转子包括两段,一段经永磁体磁化成N 极,另一段磁化为S 极,每段转子齿以一个齿距间隔均匀分布,但两段转子的齿相互错开1/2 个转子齿距。3步进电机常见的控制方案与驱动技术简介3.1常见的步进电机控制方案3.1.1基于电子电路的控制步进电机受电脉冲信号控制,电脉冲信号的产生、分配、放大全靠电子元器件的动作来实现。由于脉冲控制信号的驱动能力一般都很弱,因此必须有功率放大驱动电路。步进电机与控制电路、功率放大驱动电路组成一体,构成步进电机驱动系统。此种控制电路设计简单,功能强大,可实现一般步进电机的细分任务。这个系统由三部分组成:脉冲信号产生电路、脉冲信号分配电路、功率放大驱动电路。系统组成如图3.1所示。脉冲控制器环形分配器功率放大驱动电路步进电机图3.1基于电子电路控制系统此种方案即可为开环控制,也可闭环控制。开环时,其平稳性好,成本低,设计简单,但未能实现高精度细分。采用闭环控制,即能实现高精度细分,实现无级调速。闭环控制是不断直接或间接地检测转子的位置和速度,然后通过反馈和适当的处理,自动给出脉冲链,使步进电机每一步响应控制信号的命令,从而只要控制策略正确电机不可能轻易失步。该方案多通过一些大规模集成电路来控制其脉冲输出频率和脉冲输出数,功能相对较单一,如需改变控制方案,必须需重新设计,因此灵活性不高。3.1.2基于PLC的控制PLC也叫可编程控制器,是一种工业上用的计算机。PLC作为新一代的工业控制器,由于具有通用性好、实用性强、硬件配套齐全、编程简单易学和可靠性高等优点而广泛应用于各行业的自动控制系统中。步进电机控制系统有PLC、环形分配器和功率驱动电路组成。控制系统采用PLC来产生控制脉冲。通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制伺服机构的进给量,同时通过编程控制脉冲频率来控制步进电机的转动速度,进而控制伺服机构的进给速度。环形脉冲分配器将PLC输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。PLC控制的步进电机可以采用软件环形分配器,也可采用硬件环形分配器。采用软件环形分配器占用PLC资源较多,特别是步进电机绕组相数大于4时,对于大型生产线应该予以考虑。采用硬件环形分配器,虽然硬件结构稍微复杂些,但可以节省PLC资源,目前市场有多种专用芯片可以选用。步进电机功率驱动电路将PLC输出的控制脉冲放大,达到比较大的驱动能力,来驱动步进电机。 采用软件来产生控制步进电机的环型脉冲信号,并用PLC中的定时器来产生速度脉冲信号,这样就可以省掉专用的步进电机驱动器,降低硬件成本。但由于PLC的扫描周期一般为几毫秒到几十毫秒,相应的频率只能达到几百赫兹,因此,受到PLC工作方式的限制及其扫描周期的影响,步进电机不能在高频下工作,无法实现高速控制。并且在速度较高时,由于受到扫描周期的影响,相应的控制精度就降低了。3.1.3基于单片机的控制采用单片机来控制步进电机,实现了软件与硬件相结合的控制方法。用软件代替环形分配器,达到了对步进电机的最佳控制。系统中采用单片机接口线直接去控制步进电机各相驱动线路。由于单片机的强大功能,还可设计大量的外围电路,键盘作为一个外部中断源,设置了步进电机正转、反转、档次、停止等功能,采用中断和查询相结合的方法来调用中断服务程序,完成对步进电机的最佳控制,显示器及时显示正转、反转速度等状态。环形分配器其功能由单片机系统实现,采用软件编程的办法实现脉冲的分配。本方案有以下优点:1)单片机软件编程可以使复杂的控制过程实现自动控制和精确控制,避免了失步、振荡等对控制精度的影响;2)用软件代替环形分配器,通过对单片机的设定,用同一种电路实现了多相步进电机的控制和驱动,大大提高了接口电路的灵活性和通用性;3)单片机的强大功能使显示电路、键盘电路、复位电路等外围电路有机的组合,大大提高系统的交互性。基于以上优点,本次设计采用基于单片机的控制方案。3.2步进电机驱动技术步进电动机上个世纪就出现了,它的组成、工作原理和今天的反应式步进电动机没有什么本质区别,也是依靠气隙间的磁导变化来产生电磁转矩。上世纪80年代以后,由于廉价的微型计算机以多功能的姿态出现,步进电动机的控制方式变得更加灵活多样。步进电机驱动技术指的是用步进电机驱动器的驱动级来实现对步进电机各相绕组的通电和断电,同时也是对绕组承受的电压和电流进行控制的技术。到目前为止,步进电机驱动技术通常分为单电压驱动、单电压串电阻驱动、高低压驱动、斩波恒流驱动、升频升压驱动和细分驱动等。单电压驱动是通过改变电路的时间常数以提高电机的高频特性。该驱动方式早在六十年代初期国外就已大量使用,它的优点是结构简单、成本低;缺点是串接电阻器的做法将产生大量的能量损耗,尤其是在高频工作时更加严重,因而它只适用于小功率或对性能指标要求不高的步进电机驱动。单电压串电阻驱动是在单电压驱动技术的基础上为电枢绕组回路串入电阻,用以改善电路的时间常数以提高电机的高频特性。它提高了步进电机的高频响应、减少了电动机的共振,也带来了损耗大、效率低的缺点。这种驱动方式目前主要用于小功率或启动、运行频率要求不高的场合。高低压驱动是指不论电动机的工作频率是多少,在导通相的前沿用高电压供电来提高电流的上升沿斜率,而在前沿过后采用低电压来维持绕组的电流,即采用加大绕组电流的注入量以提高出力,而不是通过改善电路的时间常数来使矩频性能得以提高。但是使用这种驱动方式的电机,其绕组的电流波形在高压工作结束和低压工作开始的衔接处呈凹形,致使电机的输出力矩有所下降。这种驱动方式目前在实际应用中还比较常见。为了弥补高低压电路中电流波形的下凹,提高输出转矩,七十年代中期研制出斩波电路,该电路由于采用斩波技术,使绕组电流在额定值上下成锯齿形波动,流过绕组的有效电流相应增加,故电机的输出转矩增大,而且不需外接电阻,整个系统的功耗下降,效率较高,因而恒流斩波电路得到了广泛应用,本文正是应用恒流斩波技术实现了驱动控制。为改善恒流驱动方式的低频特性,设计一个低速时低电压驱动,高速时高电压驱动的电路,使其成为一个由脉冲频率控制的可变输出电压的开关稳压驱动电源。在低速运行时,电子控制器调节功率开关管的导通角,使线路输出的平均电压较低,电动机不会像在恒流斩波驱动下那样在低速容易出现过冲或共振现象,从而避免产生明显的振荡。当运行速度逐渐变快时,平均电压渐渐提高以提供给绕组足够的电流。调频调压线路性能优于恒电压和恒电流线路,但实际运行中需要针对不同参数的电机,相应调整其输出电压与输入频率的特性。细分驱动是指在每次脉冲切换时,不是将绕组的全部电流通入或切除,而是只改变相应绕组中电流的一部分,电动机的合成磁势也只旋转步距角的一部分。细分驱动时,绕组电流不是一个方波而是阶梯波,额定电流是台阶式的投入或切除。比如:电流分成n个台阶,转子则需要n次才转过一个步距角,即n细分,细分驱动最主要的优点是步距角变小,分辨率提高,且提高了电机的定位精度、启动性能和高频输出转矩:其次,减弱或消除了步进电机的低频振动,降低了步迸电机在共振区工作的几率。可以说细分驱动技术是步进电动机驱动与控制技术的一个飞跃。4 方案的论证 4.1 控制方式的确定步进电机控制是比较精确的,步进电机开环控制系统具有成本低、简单、控制方便等优点,在采用单片机的步进电机开环系统中,控制系统的CP脉冲的频率或者换向周期实际上就是控制步进电机的运行速度。系统可用两种办法实现步进电机的速度控制。一种是延时,一种是定时。延时方法是在每次换向之后调用一个延时子程序,待延时结束后再次执行换向,这样周而复始就可发出一定频率的CP脉冲或换向周期。延时子程序的延时时间与换向程序所用的时间和,就是CP脉冲的周期,该方法简单,占用资源少,全部由软件实现,调用不同的子程序可以实现不同速度的运行。但占用CPU时间长,不能在运行时处理其他工作,因此只适合较简单的控制过程。定时方法是利用单片机系统中的定时器定时功能产生任意周期的定时信号,从而可方便的控制系统输出CP脉冲的周期。当定时器启动后,定时器从装载的初值开始对系统及其周期进行加计数,当定时器溢出时,定时器产生中断,系统转去执行定时中断子程序。将电机换向子程序放在定时中断服务程序中,定时中断一次,电机换向一次,从而实现电机的速度控制。由于从定时器装载完重新启动开始至定时器申请中断止,有一定的时间间隔,造成定时时间增加,为了减少这种定时误差,实现精确定时,要对重装的计数初值作适当的调整。调整的重装初值主要考虑两个因素一是中断响应所需的时间,二是重装初值指令所占用的时间,包括在重装初值前中断服务程序重的其他指令因。综合这两个因素后,重装计数初值的修正量取8个机器周期,即要使定时时间缩短8个机器周期。用定时中断方式来控制电动机变速时,实际上是不断改变定时器装载值的大小。在控制过程中,采用离散办法来逼近理想的升降速曲线。为了减少每步计算装载值的时间,系统设计时就把各离散点的速度所需的装载值固化在系统的ROM中,系统在运行中用查表法查出所需的装载值,这样可大幅度减少占用CPU的时间,提高系统的响应速度愿大多数步进电机运动控制系统都运行在开环状态下,因为成本较低,并可提供运动控制技术固有的位置控制,无须反馈。但是,在某些应用中,需要更多的可靠性、安全性或产品质量的保证,因此,闭环控制也是一种选择。以下是一些实现步进电机闭环控制的方法:1) 步进确认,这是最简单的位移控制,使用一个低值的光学编码器计算步进移动的数量。一个简单的回路与指令校验的步进电机比较,验证步进电机移动到预计的位置;2) 反电动势, 一种无传感器的检测方法,使用步进电机的反电动势信号,测量和控制速度。当反电动势电压降至监测探测水平时,闭环控制转为标准开环,完成最终的位移移动。3)全伺服控制,指全时间的使用反馈设备,用于步进电机-编码器、解码器、或其它反馈传感器上,从而更为精确地控制步进电机位移和转矩。其它的方法包括各种不同的反电动势控制电机参数测量和软件技术,一些制造企业都会使用这些方法。这里,步进驱动监控和测量电机线圈,使用电压额电流信息提高步进电机控制。正阻尼使用这一信息阻挡振动的速度,产生更多的可用的转矩输出,降低转矩的机械振动损耗。无编码器安装监测采用信息检测同步速度的损耗。传统步进电机控制通常采用反馈设备和非传感方法,是有效的实现带有安全需求、危险状况或高精确度要求的运动应用的方法。大多数基于步进电机的系统,一般都运行在开环状态下,这样可提供一个低成本的方案。 事实上,步进系统可提高位移控制的性能,且不需要反馈。但是,当步进电机在开环时运行,在命令步幅和实际步幅之间会有同步损耗的可能。闭环控制,是传统步进控制的一个部分,能有效地提供更高地可靠性、安全性或产品质量。在这些步进系统中,反馈设备或间接参数传感方法的闭环能进行校正或控制失步、监测电机停滞,以及确保更大的可用转矩输出。近期,步进电机的闭环控制(CLC)还能帮助执行智能分布运动架构。然而,开环操作会有失步的风险,这将产生定位失误。但与伺服系统中使用的编码器相比,闭环步进电机采用的编码器成本更低。故选择闭环控制。4.2 驱动方式的确定步进电机的驱动一般有两种方法,一种是通过CPU直接来驱动,这种方法一般不宜采用,因为CPU的输出电流脉冲是特别小的它不能足以让步进电机的转动;别一种是通过CPU来间接驱动,就是把从CPU输出的信号进行放大,然后直接驱动或是再通过光电隔离间接来驱动步进电机,这种方法比较安全可靠。固本次设计应采用CPU间接驱动步进电机。用编码器的测速发电机作为转速测量工具,因为选择了闭环控制,就必须有反馈元件,反馈元件一般有两种,一种是采用同轴的测速发电机,把步进电机的转速反馈回来,然后通过显示器显示出来并对步进电机进行调节;别一种是通过光同轴的电编码器把步进电机的转速反馈回来对步进电机进行调节;两者相比,后者的设计比较简单,价格便宜,安全可靠,污染少。固一般采用后者,用光电骗码器作为反馈元件。4.3 驱动电路的选择步进电机的驱动电机有多种,但最为常用的就是单电压驱动、双电压驱动、斩波驱动、细分控制驱动等。单电压驱动是步进电机控制中最为简单的一种驱动电路,它在本质上是一个单间的反相器。它的最大特点是结构简单,因它的工作效率低,特别是在高频下更显的突出。它的外接电阻R要消耗相当一部分的热量,这样就会影响电路的稳定性所以此种驱动方式一般只用在小功率的步进电机的驱动电路中。双电压驱动是电路一般采用两种电源电压来驱动,因这两个电源分别是一个为高压一个为低压,因此也称为高低压驱动电路。双电压驱动电路的缺点是在高低压连接处电流出现谷点,这样必然引起力矩在谷点处下降。不宜于电机的正常运行。对于斩波电路驱动则可以克服这种缺点,并且还可以提高步进电机的效率。所以从提高效率来看这是一种很好的驱动电路,它可以用较高的电源电压,同时无需外接电阻来限定期额定电流和减少时间常数。但由于其波形顶部呈现锯齿形波动,所以会产生较大的电磁噪声。细分驱动是用脉冲电压来供电的,对于一个电压脉冲,转子就可以转动一步,一般会根据电压脉冲的分配方式,步进电机各相绕阻会轮流切换,固可以使步进电机的转子旋转。细分控制的电路一般分为两类,一类是采用线性模拟功率放大器的方法获得阶梯形电流,这种方法简单,但效率低。别一种是用单片机采用数子脉宽调制的方法获得阶梯电流,这种方法需要复杂的计算可使细分后的步距角一致。但因本次设计对步进电机的精度要求比较高转速的调节范围比较广,固应选用驱动芯片8713来驱动,并通过软件来实现步进电机的调速。4.4 基本方案的确定因本次设计的要求,选用三相三拍步进电机,单片机选用89C51作为控制器。选取用8279来驱动显示和键盘。选用8713作为步进电机的驱动芯片并通过光电耦合来驱动步进电机。然后由于步进电机同轴的光电编码器作为反馈元件,并把反馈回的信号经CPU处理后再由显示器显示出来。但由键盘输入的速度数值了得通过显示器来显示,固本次设计要两排显示,一排来显示给定的转速一排来显示实际的转速。系统原理框图如4.1所示:键盘8279显示器AT89C518713光电耦合三相步进电机光电编码器图4.1系统原理框图5硬件电路的设计5.1 单片机的选择 本次设计以CPU选用89C5l作为步进电机的控制芯片89C51的结构简单并可以在编程器上实现闪烁式的电擦写达几万次以上使用方便等优点,而且完全兼容MCS5l系列单片机的所有功能。AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。5.1.1单片机的引脚功能:单片机是一种时序电路,必须有脉冲信号才能工作。在它的内部有一个时钟产生路,有两种振荡方式,一种是内部振荡方式,只要接上两个电容和一个晶振即可;另一种是外部振荡方式,采用外部振荡方式时,需在XTL2上加外部时钟信号。1)VCC (40): 电源+5V 2) VSS(20):接地,也就是GND 3)XTL1(19)和XTL2(18):振荡电路 4)PSEN(29):片外ROM选通信号,低电平有效。5)ALE/PROG(30):地址锁存信号输出端/EPROM编程脉冲输入端 6)RST/VPD(9):复位信号输入端/备用电源输入端7)EA/VPP(31):内外部ROOM选通端 8)P0口(39-32):双向I/O口9) P1口(1-8):准双向通用I/0口 10) P2口(21-28):准双向I/0口。原理图如5-1所示:图5.1 AT89C51的引脚图5.1.2 主要特性:1)CPU与MCS-51兼容;2)4K字节可编程闪烁存储器;3)全静态工作:0Hz-24Hz;4)三级程序存储器保密锁定;5)128*8位内部RAM;6)32条可编程I/O线;7)两个16位定时器/计数器;8)6个中断源、可编程串行通道、低功耗的闲置和掉电模式、片内振荡器和时钟电路 振荡器特性:XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。芯片擦除:整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。5.2 步进电机的选择 因本次设计的要求,步进电机的应选用三相三拍的步进电机,关于步进电机的具体说明如下;反应式步进电动机是利用凸极转子交轴磁阻与直轴磁阻之差所产生的反应转矩而转动的所以也称为磁阻式步进电动机现以一个最简单的三相反应式步进电动机为例说明其工作原理。图5.2是一台三相反应式步进电动机的原理图定子铁芯为凸极式共有三对六个磁极每两个相对的磁极上绕有一相控制绕组转子用软磁性材料制成也是凸极结构只有四个齿齿宽等于定子的极靴宽下面通过几种基本的控制方式来说明其工作原理。图5.2三相反应式步进电动机的原理图5.2.1 三相单三拍通电方式当A 相控制绕组通电,其余两相均不通电,电机内建立以定子A 相极为轴线的磁场。由于磁通具有力图走磁阻最小路径的特点,使转子齿1、3 的轴线与定子A 相极轴线对齐,若A相控制绕组断电B相控制绕组通电时,转子在反应转矩的作用下,逆时针方向转过30使转子齿2、4 的轴线与定子B 相极轴线对齐,即转子走了一步。若再断开B相使C相控制绕组通电,转子又转过30 使转子齿1、3 的轴线与定子C相极轴线对齐。如此按A-BC-A 的顺序轮流通电,转子就会一步一步地按逆时针方向转动,其转速取决于各相控制绕组通电与断电的频率,旋转方向取决于控制绕组轮流通电的顺序若按A-C-B-A 的顺序通电,则电机按顺时针反方向转动。上述通电方式称为三相单三拍运行,“三相”是指三相步进电动机,“单”是指每次只有一相控制绕组通电,控制绕组每改变一次通电方式称为一拍,三拍是指经过三次改变通电方式为一个循环,我们称每一拍转子转过的角度为步距角。三相单三拍运行时的步距角为30度。5.2.2 三相双三拍通电方式 控制绕组的通电方式为AB-BC-CA-AB 或AB-CA-BC-AB 每拍同时有两相绕组通电三拍为一个循环,当A B 两相控制绕组同时通电时转子齿的位置应同时考虑到两对定子极的作用,只有A 相极和B 相极对转子齿所产生的磁拉力相平衡才是转子的平衡位置,可见双三拍运行时的步距角仍是30,但双三拍运行时每一拍总有一相绕组持续通电,例如由A B 两相通电变为B C 两相通电时,B 相保持持续通电状态C 相磁拉力使转子逆时针方向转动,而B 相磁拉力却起有阻止转子继续向前转动的作用。即起到一定的电磁阻尼作用所以电机工作比较平稳,而在三相单三拍运行时由于没有这种阻尼作用,所以转子达到新的平衡位置容易产生振荡稳定性不如双三拍运行方式。三相双三拍运行方式AB相与BC相导通的结构如图5.3所示: (A)AB 相导通 (B)BC 相导通 图5.3 三相双三拍运行方式在分析步进电动机动态运行时,不仅要知道某一相控制绕组通电时的矩角特性,而且要知道整个运行过程中各相控制绕组通电状态下的矩角特性,即所谓矩角特性族以三相单三拍的通电方式为例,若将失调角的坐标轴统一取在A 相磁极的轴线上,显然A 相通电时矩角特性如图5.4中曲线A 所示稳定平衡点为O,点B 相通电时转子转过1/3 齿距相当于转过2/3 电角度,它的稳5.4中曲线C,这三条曲线就构成了三相单三拍 通电方式时的矩角特性族总之矩角特性族中的每一条曲线依次错开一个用电角度表示 的步矩角 同理可得到三相单双六拍通电方式时的矩角特性族如图5.5与稳定响应曲线5.6 所示:图5.4三拍时的矩角特性族图5.5六拍时的矩角特性族 5.6稳定响应曲线 5.3驱动电路的选择 因从CPU输出的脉冲信号特别小,固应先经过PWM8713脉冲分配器对脉冲进行分配并经过放大然后再经过光耦驱动来驱动步进进电机。PWM8713芯片介绍如下:PWM8713是日本三洋电机公司生产的步进电机脉冲分配器。该器件采用DIP 16封装,适用于三相或四相步进电机。PWM8713在控制三相或四相步进电机时都可选择三种励磁方式(1相励磁,2相励磁,3相励磁三种励磁方式之一),每相最小的拉电流和灌电流为20mA,它不但可满足后级功率放大器的要求,而且在所有输人端上均内嵌有施密特触发电路,抗干扰能力很强。在PWM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入法。PWM8713有两种脉冲输人法:双脉冲输人法和单脉冲输人法。1 16 2 153 144 135 126 117 108 9Cu VddCp CoCk EmU/D Ea Eb Vss R图5.7 PWM8713的引脚图PWM8713 功能介绍PWM8713 是专用的步进电机的步进脉冲产生芯片,它适用于三相和四相步进电机。如图所示PWM8713 的引脚,Cu 为加脉冲输入端,它使步进电机正转,Cp 为减脉冲输入端,它使步进电机反转,Ck为脉冲输入端,当脉冲加入此引脚时,Cu 和Cp 应接地,正反转由U/ D 的电平控制,EA 和EB 用来选择励磁方式的,可以选择的方式有一相励磁、二相励磁和三相励磁,C 用来选择三、四相步进电机,Vss 为芯片工作地,R 为芯片复位端,41 为四相步进脉冲输出端,31 为三相步进脉冲输出端,Em 为励磁监视端,Co 为输入脉冲监视端,VDD为芯片的工作电源( + 4 + 18V)。其具体的原理框图如5.8所示:P1.0P1.1AT89C513 124 8713 1156 107A相驱动B相驱动C相驱动 步进脉冲 5V 8713 图5.8驱动电路框图5.4 显示电路与键盘的选择 显示电路的用8279芯片来驱动,8279芯片分别接两排显示器,每排为4位显示,分别用来显示步进电机的实际转速与给定转速。8279芯片的具体介绍如下;1) DB0DB7:双向数据总线。在CPU于827数 据与命令的传送。2) CLK:8279的系统时钟,100KHZ为最佳选择。3) RESET:复位输入线,高电平有效。当 RESET 输入端出现高电平时,8279被初始复位。4) /CS:片选信号。低电平使能,使能时可将命令写入8279或读取8279的数据。5) A0:用于区分信息的特性。当A0=1时,CPU向8279写入命令或读取8279的状态,当A0为0时,读写一数据。6) /RD:读取控制线。/RD=0,8279会送数据至外部总线。7) /WR:写入控制线。/WR=0,8279会从外部总线捕捉数据。8) IRQ:中断请求输出线,高电平有效。当FIFO RAM 缓冲器中存有键盘上闭合键的键码时,IRQ线升高,向CPU请求中断,当CPU将缓冲器中的输入键数的数据全部读取时,中断请求线下降为低电平。9) L0SL3:扫描输出线,用于对键盘显示器扫描。可以是编码模式(16对1)或译码模式(4对1)。10) RL7:反馈输入线,由内部拉高电阻拉成高电平,也可由键盘上按键拉成低电平。11) FT、CNTL/STB :控制键输入线,由内部拉高电 阻拉成高电平,也可由外部控制按键拉成低电平。12) TB03、OUTA03:显示段数据输出线,可分别作为两个半字节输出,也可作为8位段数据输出口,此时OUTB0为最低位, OUTA3位最高位。13) 消隐输出线,低电平有效。当显示器切换时或使用消隐命令时,将显示消隐。具体芯片理框图如5.9所示:图5.9 8279的引脚图键盘的连接一般有两种方式,一种是独立式键盘;一种是行列式键盘。独立式键盘就是各个键相互独立,每个键盘接一根输入线,通过检测输入线的电平状态来确定那个键按下。这种键盘的输入线较多,结构复杂,一般适用于按键较少操作速度较高的场合。而行列式键盘是由行和列线交义组成,一般用于按键较多的场合。本次设计一共用9个键因此采用行列式键盘。具体的原理图如5.10所示: 图5.10键盘连接图显示电路的选择:显示电路选用两排LED显示,每排分别为四位。能满足设计的要求,转速范围为0至1000。LED显示电路有两种接法,一种为共阴极,一种为共阳极。原理图如5.11所示:图5.11 显示器接线图5.5 反馈电路的选择应选用光电编码器作为反馈元件,光电编码器与步进电机是同轴的输出经过放大送到计算机。并通过显示器显示出步进电机的实际转速。5.5.1光电编码器原理光电编码器,是一种通过光电转换将位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图5.12所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。光源透镜码盘透镜光敏元件放大整形转轴脉冲输出图5.12 光电编码器的原理图根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。本次设计用绝对式编码器其原理如下:绝对编码器是直接输出数字量的传感器,它的圆形码盘上沿径向有若干同心磁道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。目前国内已有16位的绝对编码器产品。绝对式编码器是利用自然二进制或循环二进制(格雷码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点如下:1)可以直接读出角度坐标的绝对值;2)没有累积误差;3)电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。6软件的设计 6.1 显示子程序的设计开始设置数据显示区首址8279初始化设置位选字输出位选字读显示数据查段选码输出段选码延时1ms显示完8位数据否改变位选字返回 否 是 图6.1 显示程序流程图 6.2键盘子程序的设计开始有键闭合否?输入键号有键闭合否?闭合键释放否判断闭合键号调用子程序延时6ms调用子程序延时12ms返回 是 否 否 是 否 是 图6.2 键盘程序流程图6.3驱动程序流程的设计: 返回开始设置脉冲个数保护现场输出高电平延时输出低电平延时脉冲数是否够 恢复现场 否是图6.3 主程序流程图6.4正反转程序流程图6.4.1正反转程序流程图开始设置控制步数设置定时器的工作方式设置定时器的初始值正转否取反转起始地址取正转起始地址开中断启动定时允许这时中断中断等待 是 否 图6.4 正反转程序流程图6.4.2 转速快慢程序流程图开始返回保护现场输出控制模块指向下一个控制模块取控制模块是控制模块结束标志否恢复起始控制台模块步数够否禁止定时中断关中断恢复现场开始
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学培训


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!