资源描述
2020年河南省普通高中招生考试试卷数学注意事项:1。本试卷共6页,三个大题,满分120分,考试时间100分钟。2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。答在试卷上的答案无效.、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。1. 2的相反数是A.-2B.-C.-D.2222.如下摆放的几何体中,主视图与左视图有可能不同的是93.要调查下列问题,适合采用全面调查(普查)的是A.中央电视台开学第一课的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.如图,I1/I2,13/14,若/1=70,则/2的度数为A.100B.110C.120D.1305.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于A.230BB.830BC.8M010BD.2X1030B6 .若点A(-1,y1),B(2,y2),C(3,y3)在反比例J函数y6的图象上,则y1,y2,xy3的大小关系是A.y1y2y3B.y2y3y1C.y1y3y2D.y3y2y17 .定义运算:mrn=mn2mn-1.例如:42=422-42-1=7.则方程1丹=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.50002(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75009.如图,在ABC中,/ACB=90,边BC在x轴上,木顶点A,B的坐标分别为(一2,6)和(7,0).将A正方形OCDE沿x轴向右平移,当点E落在AB边卜、上时,点D的坐标为A.(3,2)B2C.(U,2)D410.如图,在AABC中,AB=BC=G/A,C为圆心,AC的长为半径作弧D、.(2,2)一广cosV(第9题)(4,2)BAC=30,分别以点D,两弧交十点D,连接DA,DC,则四边形ABCD的面积为A.6mB.9C.6D.3x/3二、填空题(每小题3分,共15分)11 .请写出一个大于1且小于2的无理数:xa12 .已知关于x的不等式组,其中a,b在数xb,上AB(第10题)11b0a轴上的对应点如图所示,则这个不等式组的解1集为:13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记TF指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是趣*(第13题)O EB14. 如图,在边长为2&的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为(第15题)15. 如图,在扇形BOC中,/BOC=60,OD平分/BOC交错误!于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为三、解答题(本大题共8个小题,满分75分)16. (8分)先化简,再求值:(1)其中aV51.a1a117. (9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:【收集数据】从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单彳立:g)如下:甲:501497498502513489506490505486502503498497491500505502504505乙:505499502491487506493505499498502503501490501502511499499501【整理数整理以二数据,得至L海袋方斤量x(g)KJ频数4亍布表.频、质数7机落、485反490490反495495500500毛505505毛510510毛515甲、224741乙135731【分析数据】根据以上数据,得到以下统计量.机器一一平均数中位数力差不合格率499.7501.542.01乙499.7a31。8110%根据以上信息,回答下列问题:(1)表格中的a=,b=;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.18. (9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,现在点M处测得观星台最高点A的仰角为22,然后沿MP方向前进16m到达点N处,测得点A的仰角为45.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0。1m.参考数据:sin220群37,cos22分093,tan22=0,402=1.41;(2)景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19. (9分)暑假将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下:方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑假专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为平(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少猊明理由.20. (9分)我们学习过利用尺规作图平分一个任意角,而利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具一-三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB和AC垂直于点B,DB足够长.图1y轴正半轴分别交于点A,使用方法如图2所示,若要把/MEN三等分,只需适当放置三分角器,使DB经过/MEN的顶点E,点A落在边EM上,半圆。与另一边EN恰好相切,切点为F,则EB,EO就把/MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的巴知”和求证”请补充完整,并写出证明”过程.已知:如图2,点A,B,O,C在同一直线上,EBXAC,垂足为点B,.求证:.21. (10分)如图,抛物线y=x2+2x+c与x轴正半轴,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.22.(10分)小亮在学习中遇到这样一个问题如图,点D是错误!上一动点,线段BC=8 cm, 点A是线段BC的中点,过点C作CF/ BD,交 DA的延长线于点F .当 DCF为等腰三角形时, 求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习 函数的经验研究此问题,请将下面的探究过程补充完整:BD/cm01。02。03.04。05。06。07。08。0CD/cm8.07.77。26。65。9a3。92.40FD/cm8.07。46。96。56。16。06。26。78。0(1)根据点D在错误!上的不同位置,画出相应的图形,测量线段 BD, CD, FD的长度,得到下表的几组对应值.操作中发现:当点D为错误!的中点时,BD=5。 线段CF的长度无需测量即可得到 (2)将线段BD的长度作为自变量x0 cm,则上表中a的值是”,请简要说明理由.CD和FD的长度都是x的函数,分别记为ycD和yFD,并在平面直角坐标系xOy中画出了函数yFD的图象,如图所示.请在同一坐标系中画出函数yCD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当4DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).yFDO 12345678 x/cm23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB,记旋转角为%连接BB;过点D作DE垂直于直线BB,垂足为点E,连接DB,CE.BB如图1,当而60时,ADEB的形状为,连接BD,可求出的CE值为;(2)当0a360且a均0时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;当以点B,E,C,D为顶点的四边形是平行四边形时,请直接写出-BEBE的值.
展开阅读全文